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Motivations

Safety is critical in many applications of robotics.

Example: control wheel steering (CWS) in an aircraft.

We focus here on control theory: a program, or control function,
operates a robot in order to achieve a goal.

Example: goal of the CWS: maintain the heading and attitude of the
aircraft as set by the pilot.

We want to bring formal guarantees on this control function: the goal
is achieved, no safety condition is violated.

Example: safety conditions for the CWS:
I The altitude stays in a given range.
I No abrupt variation of the aircraft position.
I The aircraft does not deviate too much from its heading.
I . . .
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Formal verification for such systems

System characteristics

Control function
Equations of motion Properties of the ideal system

Properties of the discrete
system with exact computations

Properties of the real system

Newton’s laws Analysis

Approximation scheme /
Time discretization

Floating-point arithmetic

Ideal World (Mathematics)

Real World (Implementations)
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The inverted pendulum

The inverted pendulum is a standard example for testing control
techniques.

fctrl
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Goal: stabilize the pendulum on its unstable equilibrium.

Control function: force fctrl applied to the cart.

Safety condition: none/the cart stays near its starting point.
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Context

Control function and stability proof from [Lozano et al., 2000].

Proof based on LaSalle’s invariance principle [LaSalle, 1960].

Principle: qualitative analysis of the solutions of a first-order
autonomous differential equation:

ẏ = F ◦ y .
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Contributions

LaSalle’s invariance principle generalized and
formalized [Cohen and Rouhling, 2017].

A stability proof for the inverted pendulum corrected and
formalized [Rouhling, 2018].

Yet another analysis library1, compatible with Mathematical
Components.

Remark: we did the proofs twice, first using the Coquelicot
library [Boldo et al., 2015], then using the Mathematical
Components Analysis library.

1https://github.com/math-comp/analysis, joint work with Reynald Affeldt, Cyril
Cohen, Assia Mahboubi and Pierre-Yves Strub.
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Homoclinic orbit
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Lozano et al. prove the convergence of solutions to a homoclinic orbit:

1

2
ml2θ̇2 = mgl (1− cos θ) .

This is done by an energy approach: the homoclinic orbit is
characterised by E = 0 and ẋ = 0.

They also want the cart to stop at its initial position:

x = 0 and ẋ = 0.
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LaSalle’s invariance principle for real functions

The differential system as a vector field:

ẏ = F ◦ y

F

y(t)
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LaSalle’s invariance principle for real functions

A sufficient condition for stability:

ẏ = F ◦ y

V F

M y(t)
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Preliminary definitions

A set A is said to be invariant if every solution to ẏ = F ◦ y starting
in A (i.e. y(0) ∈ A) remains in A.

A function of time y(t) approaches a set A as t approaches infinity,
denoted by y(t)→ A as t → +∞, if

∀ε > 0, ∃T > 0, ∀t > T , ∃p ∈ A, ‖y(t)− p‖ < ε.

A

̀
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The positive limiting set

Definition

Let y be a function of time. The positive limiting set of y , denoted
by Γ+(y), is the set of all points p such that

∀ε > 0,∀T > 0,∃t > T , ‖y(t)− p‖ < ε.

In other terms, Γ+(y) is the set of limit points of y at infinity.

Remark: a function with values (ultimately) in a compact set converges
to its positive limiting set as time goes to infinity.
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Generalization of LaSalle’s invariance principle

Assume

F is such that we have the
existence and uniqueness of
solutions to ẏ = F ◦ y and the
continuity of solutions relative
to initial conditions in K .

K compact and invariant.

V : Rn → R is continuous in K
and differentiable along
trajectories of solutions starting
in K .

Ṽ (p) ≤ 0 in K where Ṽ (p) is
the directional derivative of V
at point p along the trajectory
of the solution starting at p.

Then, for L :=
⋃

y solution
starting in K

Γ+(y)

and E :=
{
p ∈ K | Ṽ (p) = 0

}
, L

is an invariant subset of E and
for all solution y starting in K ,
y(t)→ L as t → +∞.

K
E

+(y2)

+(y1)

+(y3)
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LaSalle’s invariance principle for the inverted pendulum

The Lyapunov function V is minimised along trajectories. Our goal
is E = 0, x = 0 and ẋ = 0. A possible choice is

V =
kE
2
E 2 +

kv
2
ẋ2 +

kx
2
x2.

The laws of Physics give a second-order differential equation. We
transform the equation on (x , θ) into a first-order equation on

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

We lose pieces of information. The invariant compact set K will help
keeping them as invariants.

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) ≤ k0

}
.
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A few aspects of the formalization

We make a pervasive use of filters.

A set of sets F is a filter if
I F 6= ∅.
I ∀P,Q ∈ F ,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.
I Neighbourhood filter of +∞, written Rbar_locally p_infty.
I Image of a filter F by a function f:

filtermap f F := {A | f−1 (A) ∈ F}.
Convergence: lim

x
f = y written

filterlim f (locally x) (locally y) in Coquelicot.

Compactness can also be expressed in terms of filters.
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A few aspects of the formalization (cont.)

For this formalization we worked on:

A theory of sets, together with notations.

An inference mechanism for filters and notations for limits.

Several aspects of topology:
I Compact sets.
I Closed sets.
I Topological spaces.
I Tychonoff’s Theorem and Heine-Borel’s Theorem.

A mechanism for automatic differentiation/derivation.

The compatibility between the vectors of Mathematical
Components and Coquelicot’s structures.
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The Mathematical Components Analysis library

Classical analysis.

Inspired from Coquelicot.

Compatible with Mathematical Components.

Includes various facilities:
I Notations for limits and convergence, based on filter inference:

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo.
I A differential function, together with a notation: ’d_x f.
I Equational Bachmann-Landau notations:

f = g +o_F e, f =O_F e.
I Automatic proof of positivity.
I Automatic differentiation/derivation.
I A set of tactics for delayed instantiation of existential witnesses (near).
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Hierarchy of topological structures

choiceType

pointedType

filteredType U

topologicalType

uniformType

completeType

lmodType K

normedModType K

numDomainType

absRingType

completeNormedModType K

99K proved inheritance

−→ inheritance by definition

Translated Coquelicot structures

Mathematical Components structures

Mathematical Components Analysis structures
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Comparison

Lines of code: 2

Using Coquelicot Using our library

LaSalle’s invariance principle ∼ 370 ∼ 370

Inverted pendulum ∼ 980 ∼ 900

Tactics:

Using Coquelicot Using our library

ring 3 3 3

field 3 almost 3

lra 3 7

near 7 3

2Not counting the parts that were integrated to our library.
3Thanks to Pierre-Yves Strub:

https://github.com/jasmin-lang/jasmin/blob/master/proofs/3rdparty/ssrring.v
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Conclusion

Contributions:

A case study involving standard tools:
I An important theorem in stability analysis.
I A common benchmark for control techniques.

A new library based on what we learnt on the way.

Potential continuations:

A certified implementation?

Verification of the equations of motion.
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Axioms used in the formalization

Extensionality axioms:

propext : forall (P Q : Prop), (P <-> Q) -> (P = Q).

funext : forall (T U : Type) (f g : T -> U),

(forall x, f x = g x) -> f = g.

Classical axioms:

pselect : forall (P : Prop), {P} + {~P}.

gen_choiceMixin : forall (T : Type), Choice.mixin_of T.
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Canonical structures for filter inference

Three structures:

filter_on_term X Y: structure that records terms x : X with a
filter in Y.
Allows to infer the canonical filter associated to a term by looking at
its type.

filteredType U: interface type for types whose elements represent
filters on U.

Filtered.source Y Z: structure that records types X such that
there is a function mapping functions of type X -> Y to filters on Z.
Allows to infer the canonical filter associated to a function by looking
at its source type.
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Filter-based compactness

Clustering generalizes to filters the notion of limit point.

cluster F := {p ∈ U | ∀A ∈ F ,∀B neighbourhood of p,A ∩ B 6= ∅}

A is compact iff every proper filter on A clusters in A.

Definition compact (A : set U) := forall (F : set (set U)),

F A -> ProperFilter F -> A ‘&‘ cluster F !=set0.
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