
Formalisation Tools for Classical Analysis:
A Case Study in Control Theory

Damien Rouhling

Université Côte d’Azur, Inria, France

September 30, 2019

Dissecting the title

Formalisation Tools for Classical Analysis:
A Case Study in Control Theory

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 2 / 32

Formalisation Tools for Classical Analysis:
A Case Study in Control Theory

Controller System
Inputs Action Outputs

Sensors
Feedback

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 3 / 32

Formalisation Tools for Classical Analysis:
A Case Study in Control theory

The inverted pendulum is a standard example for testing control
techniques.

m

θ

M

x

fctrl

l

Goal: stabilize the pendulum on its unstable equilibrium.

Control function: force fctrl applied to the cart.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 4 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Free fall

ÿ = −g

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Free fall

ÿ = −g

y(t) = −g
2 t

2 + y0

t

y0 y(t)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Pendulum

θ̈ + g
l sin θ = 0

θ

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Pendulum

θ̈ + g
l θ = 0

θ

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Pendulum

θ̈ + g
l θ = 0

θ(t) = θ0 cos
(√

g
l t
)

θ

t

θ0 θ(t)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Inverted Pendulum

M(q)q̈ + C (q, q̇) q̇ + G (q) = τ

m

θ

M

x

fctrl

l

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Inverted Pendulum

M(q)q̈ + C (q, q̇) q̇ + G (q) = τ

m

θ

M

x

fctrl

l Lozano, Fantoni, Block (2000)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 6 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Kernel (type checking)

Inference mechanisms

Tactic engine

Libraries

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 6 / 32

Formalisation Tools for Classical Analysis:
A Case study in Control theory

Kernel (type checking)

Inference mechanisms

Tactic engine

Libraries

- De nitions

- Theorems
- Tools (e.g. domain-speci c tactics)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 6 / 32

Formalisation tools for Classical Analysis:
A Case study in Control theory

We obtain different logics by selecting different allowed reasoning
steps.

Classical reasoning allows for standard reasoning steps in
mathematics: proof by contradiction, excluded middle, the axiom of
choice are allowed.

LaSalle (1960):

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 7 / 32

Formalisation tools for Classical Analysis:
A Case study in Control theory

We obtain different logics by selecting different allowed reasoning
steps.

Classical reasoning allows for standard reasoning steps in
mathematics: proof by contradiction, excluded middle, the axiom of
choice are allowed.

LaSalle (1960):

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 7 / 32

Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 8 / 32

Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 8 / 32

Intuition of LaSalle’s invariance principle

The differential equation as a vector field: ẏ = F (y).

K

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 9 / 32

Intuition of LaSalle’s invariance principle

Contour map of a Lyapunov function V :

K

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 9 / 32

Intuition of LaSalle’s invariance principle

Requirements:

Invariant compact set K .

Lyapunov function V .

Regularity assumptions.

Conclusion:
The solutions of ẏ = F (y) starting in K converge to a set where V̇ = 0.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 9 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.

I Strengthen the conclusion.

Fill the gaps in the proof.

Formalise topological notions: compact sets and closed sets.

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

K E

M

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

K E

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.

LaSalle (1960):

Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.

LaSalle (1960):

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.

Formalise topological notions: compact sets and closed sets.

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32

Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 11 / 32

Soundness property for a control function

m

θ

M

x

fctrl

l

Goal: the pendulum converges to its unstable equilibrium.

Properties proven by Lozano, Fantoni and Block:
I The pendulum converges to a homoclinic orbit:

1

2
ml2θ̇2 = mgl (1− cos θ) .

I The cart converges to its initial position: x = 0 and ẋ = 0.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 12 / 32

Proof of soundness

Property: the pendulum converges to a set where

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

Proof: LaSalle’s invariance principle with a well-chosen Lyapunov
function V and a well-chosen compact set K .

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 13 / 32

Proof of soundness (cont.)

The laws of Physics give a second-order differential equation. We
transform the equation on (x , θ) into a first-order equation on

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

⇒ Take into account the relation between the variables, e.g.:

ṗ0 = p1.

We still lose pieces of information. The invariant compact set K will
help keeping them as invariants.

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 14 / 32

Proof of soundness (cont.)

The laws of Physics give a second-order differential equation. We
transform the equation on (x , θ) into a first-order equation on

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

⇒ Take into account the relation between the variables, e.g.:

ṗ0 = p1.

We still lose pieces of information. The invariant compact set K will
help keeping them as invariants.

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 14 / 32

Proof of soundness (cont.)

The laws of Physics give a second-order differential equation. We
transform the equation on (x , θ) into a first-order equation on

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

⇒ Take into account the relation between the variables, e.g.:

ṗ0 = p1.

We still lose pieces of information. The invariant compact set K will
help keeping them as invariants.

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 14 / 32

Correcting the proof

Errors encountered:

Forgotten constant.

Circular dependency.

Wrong manipulation of equations:

∀t ∈ I . f (t) = g(t) ⇒ ∀t ∈ I . ḟ (t) = ġ(t).

If I is not reduced to a point.

Consequences: minor adaptations and the necessity to find a new proof
for some points.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 15 / 32

Correcting the proof

Errors encountered:

Forgotten constant.

Circular dependency.

Wrong manipulation of equations:

∀t ∈ I . f (t) = g(t) ⇒ ∀t ∈ I . ḟ (t) = ġ(t).

If I is not reduced to a point.

Consequences: minor adaptations and the necessity to find a new proof
for some points.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 15 / 32

Correcting the proof

Errors encountered:

Forgotten constant.

Circular dependency.

Wrong manipulation of equations:

∀t ∈ I . f (t) = g(t) ⇒ ∀t ∈ I . ḟ (t) = ġ(t).

If I is not reduced to a point.

Consequences: minor adaptations and the necessity to find a new proof
for some points.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 15 / 32

Soundness theorem for the inverted pendulum

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

Definition homoclinic_orbit :=

[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = ...].

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 16 / 32

Soundness theorem for the inverted pendulum

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

Definition homoclinic_orbit :=

[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = ...].

Lemma cvg_to_homoclinic_orbit (p : ’rV[R]_5) :

p ∈ K -> sol p @ +oo --> homoclinic_orbit.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 16 / 32

Soundness theorem for the inverted pendulum

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

Definition homoclinic_orbit :=

[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = ...].

Lemma cvg_to_homoclinic_orbit (p : ’rV[R]_5) :

p ∈ K -> sol p @ +oo --> homoclinic_orbit.

Cauchy-Lipschitz / Picard-Lindelöf

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 16 / 32

A few aspects of the formalisation

Formalisation of Rn.
⇒ Combination of the Coquelicot and Mathematical
Components libraries.

Topological spaces and Tychonoff’s Theorem (extra).

Tools for automatic computation of differentials/derivatives.

Lozano, Fantoni, Block (2000):

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 17 / 32

A few aspects of the formalisation

Formalisation of Rn.
⇒ Combination of the Coquelicot and Mathematical
Components libraries.

Topological spaces and Tychonoff’s Theorem (extra).

Tools for automatic computation of differentials/derivatives.

Lozano, Fantoni, Block (2000):

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 17 / 32

A few aspects of the formalisation

Formalisation of Rn.
⇒ Combination of the Coquelicot and Mathematical
Components libraries.

Topological spaces and Tychonoff’s Theorem (extra).

Tools for automatic computation of differentials/derivatives.

Lozano, Fantoni, Block (2000):

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 17 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

============================

is_derive (fun y => 1 + y) x 1

auto derive

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

============================

is_derive (fun y => 1 + y) x 1

evar last

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

2 subgoals

?d : R

============================

is_derive (fun y => 1 + y) x ?d

subgoal 2 is:

?d = 1

Lemma is_derive_plus (f g : K -> V) (x : K) (df dg : V) :

is_derive f x df -> is_derive g x dg ->

is_derive (fun y => f y + g y) x (df + dg).

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

3 subgoals

?d1, ?d2 : R

============================

is_derive (fun _ => 1) x ?d1

subgoal 2 is:

is_derive id x ?d2

subgoal 3 is:

?d1 + ?d2 = 1

Lemma is_derive_const (a : V) (x : K) :

is_derive (fun _ : K => a) x 0.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

2 subgoals

?d1, ?d2 : R

============================

is_derive id x ?d2

subgoal 2 is:

0 + ?d2 = 1

Lemma is_derive_id (x : K) :

is_derive (fun t : K => t) x 1.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

============================

0 + 1 = 1

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Automatic computation of differentials/derivatives

Using a type class deriv to store is_derive_plus, is_derive_const
and is_derive_id in a data base of differentiation rules, we
automatically transform

============================

is_derive (fun y => 1 + y) x 1

into

============================

0 + 1 = 1

thanks to

Lemma deriv_eq (f : K -> V) (x : K) (df’ df : V) :

deriv f x df’ -> df’ = df -> deriv f x df.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32

Type classes for the computation of
differentials/derivatives

Lightweight implementation.

Easy to extend with new rules.

Palliate the lack of an auto_diff tactic.

Possibility to adapt the implementation to avoid giving the value
explicitely.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 19 / 32

Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 20 / 32

The Mathematical Components Analysis library

Classical analysis.

Inspired from Coquelicot.

Compatible with Mathematical Components.

Includes various facilities:
I From our case study:

? Notations for limits and convergence:
f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo.

? Automatic computation of differentials/derivatives.

I Designed for this library:

? A differential function, together with a notation: ’d f x.
? Equational Bachmann-Landau notations:

f = g +o_F e, f =O_F e,

f x = g x +O_(x \near F) e x, f x =o_(x \near F) e x.
? Automatic proof of positivity.
? A set of tactics for delayed instantiation of existential witnesses.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 21 / 32

Filters

A set of sets F is a filter if
I F 6= ∅.
I ∀(P,Q) ∈ F 2,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.

p N

ε
Bε(p)

I Neighbourhood filter of +∞, written Rbar_locally p_infty.
I Image of a filter F by a function y , written filtermap y F .

Convergence:
Before After

filterlim y (locally p) (locally q) y @ p --> q

filterlim y (locally p) (Rbar_locally p_infty) y @ p --> +oo

filterlim y (locally p) (set_locally A) y @ p --> A

filterlim u eventually (Rbar_locally m_infty) u --> -oo or u @ \oo --> -oo

filter_le F (locally p) F --> p

filterlim y F G = filter_le (filtermap y F) G

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 22 / 32

Filters

A set of sets F is a filter if
I F 6= ∅.
I ∀(P,Q) ∈ F 2,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.
I Neighbourhood filter of +∞, written Rbar_locally p_infty.

MN [M; +∞)

I Image of a filter F by a function y , written filtermap y F .

Convergence:
Before After

filterlim y (locally p) (locally q) y @ p --> q

filterlim y (locally p) (Rbar_locally p_infty) y @ p --> +oo

filterlim y (locally p) (set_locally A) y @ p --> A

filterlim u eventually (Rbar_locally m_infty) u --> -oo or u @ \oo --> -oo

filter_le F (locally p) F --> p

filterlim y F G = filter_le (filtermap y F) G

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 22 / 32

Filters

A set of sets F is a filter if
I F 6= ∅.
I ∀(P,Q) ∈ F 2,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.
I Neighbourhood filter of +∞, written Rbar_locally p_infty.
I Image of a filter F by a function y , written filtermap y F .

filtermap y F :=
{
A | y−1(A) ∈ F

}
.

Convergence:
Before After

filterlim y (locally p) (locally q) y @ p --> q

filterlim y (locally p) (Rbar_locally p_infty) y @ p --> +oo

filterlim y (locally p) (set_locally A) y @ p --> A

filterlim u eventually (Rbar_locally m_infty) u --> -oo or u @ \oo --> -oo

filter_le F (locally p) F --> p

filterlim y F G = filter_le (filtermap y F) G

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 22 / 32

Filters

A set of sets F is a filter if
I F 6= ∅.
I ∀(P,Q) ∈ F 2,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.
I Neighbourhood filter of +∞, written Rbar_locally p_infty.
I Image of a filter F by a function y , written filtermap y F .

Convergence:
Before After

filterlim y (locally p) (locally q) y @ p --> q

filterlim y (locally p) (Rbar_locally p_infty) y @ p --> +oo

filterlim y (locally p) (set_locally A) y @ p --> A

filterlim u eventually (Rbar_locally m_infty) u --> -oo or u @ \oo --> -oo

filter_le F (locally p) F --> p

filterlim y F G = filter_le (filtermap y F) G

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 22 / 32

The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

∀ε > 0, ∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 23 / 32

The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε
ε > 0

∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 23 / 32

The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε
ε > 0
δf > 0
∀x , |x − a| < δf ⇒ |f (x)− lf | < ε

2
δg > 0
∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

2 guess

∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 23 / 32

The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε
ε > 0
δf > 0
∀x , |x − a| < δf ⇒ |f (x)− lf | < ε

2
δg > 0
∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

2

∀x , |x − a| < min(δf , δg)⇒ |f (x) + g(x)− (lf + lg)| < ε
guess

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 23 / 32

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ-reasoning:

The (human) prover has to provide existential witnesses.

Witnesses are (usually) explicit.

Witnesses are (usually) given way before they are used.

⇒ Proof scripts are hard to read and hard to maintain.

⇒ Use an abstraction like filters.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 24 / 32

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ-reasoning:

The (human) prover has to provide existential witnesses.

Witnesses are (usually) explicit.

Witnesses are (usually) given way before they are used.

⇒ Proof scripts are hard to read and hard to maintain.

⇒ Use an abstraction like filters.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 24 / 32

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ-reasoning:

The (human) prover has to provide existential witnesses.

Witnesses are (usually) explicit.

Witnesses are (usually) given way before they are used.

⇒ Proof scripts are hard to read and hard to maintain.

⇒ Use an abstraction like filters.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 24 / 32

The near tactics: motivating example (cont.)

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

∀ε > 0, ∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:
locally(lf) ⊆ f @a
locally(lg) ⊆ g@a

locally(lf + lg) ⊆ (f + g)@a

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:
locally(lf) ⊆ f @a
locally(lg) ⊆ g@a
A ∈ locally(lf + lg)

A ∈ (f + g)@a

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:

locally(lf) ⊆ f @a
locally(lg) ⊆ g@a
ε > 0
ballε(lf + lg) ⊆ A unfolding ⇒ introduction of ε

A ∈ (f + g)@a
(i.e. (f + g)−1(A) ∈ locally(a))

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:

locally(lf) ⊆ f @a
locally(lg) ⊆ g@a
ε > 0
ballε(lf + lg) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf)) ∩ g−1(ball ε

2
(lg))) guess

closure by extension
B ∈ (f + g)@a
B ⊆ A

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:

locally(lf) ⊆ f @a
locally(lg) ⊆ g@a
ε > 0
ballε(lf + lg) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf)) ∩ g−1(ball ε

2
(lg)))

∀C , f (f −1(C)) ⊆ C ⊆ f −1(f (C))

f −1(ball ε
2
(lf)) ∩ g−1(ball ε

2
(lg)) ∈ locally(a)

ball ε
2
(lf) + ball ε

2
(lg) ⊆ ballε(lf + lg)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:

locally(lf) ⊆ f @a
locally(lg) ⊆ g@a
ε > 0
ballε(lf + lg) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf)) ∩ g−1(ball ε

2
(lg)))

closure by intersection
f −1(ball ε

2
(lf)) ∈ locally(a)

g−1(ball ε
2
(lg)) ∈ locally(a)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 25 / 32

The pros and cons of filter reasoning

Improvements:

The explicit existential witnesses are removed.

Parts of the arithmetic is hidden thanks to the abstraction.

But:

There is still a guess: we have to know beforehand how we want to
split the epsilons.

We manipulate sets while (I think) it is more intuitive to reason about
points.

⇒ Reintroduce points without breaking the abstraction and use existential
variables.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 26 / 32

The pros and cons of filter reasoning

Improvements:

The explicit existential witnesses are removed.

Parts of the arithmetic is hidden thanks to the abstraction.

But:

There is still a guess: we have to know beforehand how we want to
split the epsilons.

We manipulate sets while (I think) it is more intuitive to reason about
points.

⇒ Reintroduce points without breaking the abstraction and use existential
variables.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 26 / 32

The near tactics: motivating example (conclusion)

Standard filter manipulation:
Proof.
move=> /flim_norm limf /flim_norm limg.
move=> A /locally_normP [_/posnumP[e] lim_e_A]; rewrite locally_simpl.
apply: (@filterS _ _ _

((f + g) @‘ ((f @^-1‘ (ball_ norm lf (e%:num / 2))) ‘&‘ (g @^-1‘ (ball_ norm lg (e%:num / 2)))))).
move=> _ [x [fx gx] <−]; apply: lim_e_A.
by rewrite /= opprD addrACA; apply: normm_lt_split.

by apply: filterS (@preimage_image _ _ _ _) _; apply: filterI; [apply: limf|apply: limg].
Qed.

With the near tactics:
Proof.
move=> /flim_norm limf /flim_norm limg.
apply/flim_normP => _/posnumP[e]; rewrite !near_simpl; near=> x.
by rewrite opprD addrACA normm_lt_split //; near: x; [apply: limf|apply: limg].
Grab Existential Variables. end_near. Qed.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 27 / 32

Key ingredients

A lemma to reintroduce points and use existential variables.

Lemma filter_near_of F (P : in_filter F) Q :

Filter F -> (forall x, P(x) -> Q(x)) -> Q ∈ F.

A notation ∀x nearF , Q(x), standing for Q ∈ F , to invite the user to
reason about points.

The fact that filters are closed by intersection, to accumulate
properties.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 28 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Filter reasoning:
f @a→ lf
g@a→ lg

(f + g)@a→ (lf + lg)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε

∀ε > 0, ∀x near a, |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0 regular intro

∀x near a, |f (x) + g(x)− (lf + lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0
x near a, near intro

|(f (x)− lf) + (g(x)− lg)| < ε

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0
x near a,

|f (x)− lf | < ε
2

|g(x)− lg | < ε
2

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg)

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0

near revert
∀x near a, |f (x)− lf | < ε

2
∀x near a, |g(x)− lg | < ε

2

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 29 / 32

Back to the case study

Lines of code: 1

Using Coquelicot Using our library

LaSalle’s invariance principle ∼ 370 ∼ 370

Inverted pendulum ∼ 980 ∼ 900

∼ 70 additional lines of code could be removed with a better compatibility
between Mathematical Components and tactics such as ring and
field.

1Not counting the parts that were integrated to our library.
Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 30 / 32

Conclusion

A case study in control theory:

Generalisation of LaSalle’s invariance principle.

A corrected proof of soundness for a control function for the inverted
pendulum.

A new library for classical analysis:

Compatible with Mathematical Components.

New notations and tools (limit notations, Bachmann-Landau
notations, near tactics).

Some bits of automation:

Computation of differentials and derivatives.

A new reflection methodology based on refinements.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 31 / 32

Perspectives

Towards certified embedded software.

Integrals and Cauchy-Lipschitz Theorem.

Better accessibility for non-expert users.

Thank you for your attention!

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 32 / 32

Perspectives

Towards certified embedded software.

Integrals and Cauchy-Lipschitz Theorem.

Better accessibility for non-expert users.

Thank you for your attention!

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 32 / 32

Reflection

Term of type T Abstract syntax tree

Proven property Boolean value

x
reification

e

computation with A

true

interpretation and Lemma A_sound

P x

proof by reflection

Lemma A_sound (e : AST) : A e = true -> P (interp e).

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 33 / 32

Example: the ring tactic

Arithmetic expressions Abstract syntax trees

Proven equality Boolean value

Sparse Horner polynomials

t1 and t2

reification

e1 and e2

equality test

trueinterpretation and

Lemma ring_correct

t1=t2

ring

normalisation

equality test

Lemma ring_correct (e1 e2 : AST) (l : map) :

Peq (norm e1) (norm e2) = true ->

interp l e1 = interp l e2.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 34 / 32

A more modular methodology

Term of type T Proof-oriented object Computation-oriented object

Boolean valueBoolean valueProven property

x
reification

p
refinement

c

computation with A

true

Parametricity of A

A p = trueinterpretation and

Lemma A_sound

proof by reflection with refinement

P x

Lemma A_sound (p : PO_type) : A p = true -> P (interp p).

Main ingredients: generic programming and refinement.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 35 / 32

Almost example: the coqeal ring tactic

Arithmetic expressions

AST

Proof-oriented polynomials Computation-oriented polynomials

Computation-oriented polynomialsProof-oriented polynomialsProven equality

reification computation

depolyfication

reflexivity

polyfication

coqeal vm compute eq2coqeal_ring

refinement

computation

spec and

vm compute

Lemma polyficationP (e : AST) (l : map) :

interp l e = eval_poly l (ast_to_poly e).

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 36 / 32

