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Controller System
Inputs Action Outputs

Sensors
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Formalisation Tools for Classical Analysis:
A Case Study in Control theory

The inverted pendulum is a standard example for testing control
techniques.

m

θ
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fctrl

l

Goal: stabilize the pendulum on its unstable equilibrium.

Control function: force fctrl applied to the cart.
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Formalisation Tools for Classical Analysis:
A Case study in Control theory

Free fall

ÿ = −g
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Free fall

ÿ = −g

y(t) = −g
2 t

2 + y0
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y0 y(t)

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 5 / 32



Formalisation Tools for Classical Analysis:
A Case study in Control theory

Pendulum

θ̈ + g
l sin θ = 0

θ
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Formalisation Tools for Classical Analysis:
A Case study in Control theory

Pendulum

θ̈ + g
l θ = 0

θ(t) = θ0 cos
(√

g
l t
)

θ

t

θ0 θ(t)
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Formalisation Tools for Classical Analysis:
A Case study in Control theory

Inverted Pendulum

M(q)q̈ + C (q, q̇) q̇ + G (q) = τ
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Formalisation Tools for Classical Analysis:
A Case study in Control theory

Inverted Pendulum

M(q)q̈ + C (q, q̇) q̇ + G (q) = τ

m

θ
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fctrl

l Lozano, Fantoni, Block (2000)
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Formalisation Tools for Classical Analysis:
A Case study in Control theory
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A Case study in Control theory

Kernel (type checking)

Inference mechanisms

Tactic engine

Libraries
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Formalisation Tools for Classical Analysis:
A Case study in Control theory

Kernel (type checking)

Inference mechanisms

Tactic engine

Libraries

- De nitions

- Theorems
- Tools (e.g. domain-speci c tactics)
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Formalisation tools for Classical Analysis:
A Case study in Control theory

We obtain different logics by selecting different allowed reasoning
steps.

Classical reasoning allows for standard reasoning steps in
mathematics: proof by contradiction, excluded middle, the axiom of
choice are allowed.

LaSalle (1960):
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Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.
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Intuition of LaSalle’s invariance principle

The differential equation as a vector field: ẏ = F (y).

K
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Intuition of LaSalle’s invariance principle

Contour map of a Lyapunov function V :

K
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Intuition of LaSalle’s invariance principle

Requirements:

Invariant compact set K .

Lyapunov function V .

Regularity assumptions.

Conclusion:
The solutions of ẏ = F (y) starting in K converge to a set where V̇ = 0.
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My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.

I Strengthen the conclusion.

Fill the gaps in the proof.

Formalise topological notions: compact sets and closed sets.

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

K E

M

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

K E

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.

LaSalle (1960):

Formalise topological notions: compact sets and closed sets.
Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.
Formalise topological notions: compact sets and closed sets.

LaSalle (1960):

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



My work on LaSalle’s invariance principle

Generalise the principle:
I Weaken the hypotheses: F (0) = 0, regularity assumptions, Rn.
I Strengthen the conclusion.

Fill the gaps in the proof.

Formalise topological notions: compact sets and closed sets.

Develop notations for limits.

LaSalle (1960):

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

x \o t --> p or (x \o t) @ \oo --> p

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 10 / 32



Contributions

Formal proof of soundness of a control function for the inverted
pendulum.
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Soundness property for a control function

m

θ

M

x

fctrl

l

Goal: the pendulum converges to its unstable equilibrium.

Properties proven by Lozano, Fantoni and Block:
I The pendulum converges to a homoclinic orbit:

1

2
ml2θ̇2 = mgl (1− cos θ) .

I The cart converges to its initial position: x = 0 and ẋ = 0.
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Proof of soundness

Property: the pendulum converges to a set where

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

Proof: LaSalle’s invariance principle with a well-chosen Lyapunov
function V and a well-chosen compact set K .

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 13 / 32



Proof of soundness (cont.)

The laws of Physics give a second-order differential equation. We
transform the equation on (x , θ) into a first-order equation on

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

⇒ Take into account the relation between the variables, e.g.:

ṗ0 = p1.

We still lose pieces of information. The invariant compact set K will
help keeping them as invariants.

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
.
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Correcting the proof

Errors encountered:

Forgotten constant.

Circular dependency.

Wrong manipulation of equations:

∀t ∈ I . f (t) = g(t) ⇒ ∀t ∈ I . ḟ (t) = ġ(t).

If I is not reduced to a point.

Consequences: minor adaptations and the necessity to find a new proof
for some points.
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Soundness theorem for the inverted pendulum

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

Definition homoclinic_orbit :=

[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = ...].
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Soundness theorem for the inverted pendulum

1

2
ml2θ̇2 = mgl (1− cos θ) and x = 0 and ẋ = 0.

p = (p0, p1, p2, p3, p4) =
(
x , ẋ , cos θ, sin θ, θ̇

)
.

Definition homoclinic_orbit :=

[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = ...].

Lemma cvg_to_homoclinic_orbit (p : ’rV[R]_5) :

p ∈ K -> sol p @ +oo --> homoclinic_orbit.

Cauchy-Lipschitz / Picard-Lindelöf
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A few aspects of the formalisation

Formalisation of Rn.
⇒ Combination of the Coquelicot and Mathematical
Components libraries.

Topological spaces and Tychonoff’s Theorem (extra).

Tools for automatic computation of differentials/derivatives.

Lozano, Fantoni, Block (2000):
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Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

Damien Rouhling Formalisation Tools for Classical Analysis September 30, 2019 18 / 32



Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

============================

is_derive (fun y => 1 + y) x 1

auto derive
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Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

2 subgoals

?d : R

============================

is_derive (fun y => 1 + y) x ?d

subgoal 2 is:

?d = 1

Lemma is_derive_plus (f g : K -> V) (x : K) (df dg : V) :

is_derive f x df -> is_derive g x dg ->

is_derive (fun y => f y + g y) x (df + dg).
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Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

3 subgoals

?d1, ?d2 : R

============================

is_derive (fun _ => 1) x ?d1

subgoal 2 is:

is_derive id x ?d2

subgoal 3 is:

?d1 + ?d2 = 1

Lemma is_derive_const (a : V) (x : K) :

is_derive (fun _ : K => a) x 0.
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Automatic computation of differentials/derivatives

Goal: Prove that the derivative at point x of fun y => 1 + y is 1.

2 subgoals

?d1, ?d2 : R

============================

is_derive id x ?d2

subgoal 2 is:

0 + ?d2 = 1

Lemma is_derive_id (x : K) :

is_derive (fun t : K => t) x 1.
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Automatic computation of differentials/derivatives

============================

0 + 1 = 1
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Automatic computation of differentials/derivatives

Using a type class deriv to store is_derive_plus, is_derive_const
and is_derive_id in a data base of differentiation rules, we
automatically transform

============================

is_derive (fun y => 1 + y) x 1

into

============================

0 + 1 = 1

thanks to

Lemma deriv_eq (f : K -> V) (x : K) (df’ df : V) :

deriv f x df’ -> df’ = df -> deriv f x df.
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Type classes for the computation of
differentials/derivatives

Lightweight implementation.

Easy to extend with new rules.

Palliate the lack of an auto_diff tactic.

Possibility to adapt the implementation to avoid giving the value
explicitely.
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Contributions

Formal proof of soundness of a control function for the inverted
pendulum.

I Formal proof of a generalised version of LaSalle’s invariance principle.
In collaboration with Cyril Cohen.

I Application of the formal version of LaSalle’s invariance principle to the
inverted pendulum.

Reusable tools for formal proofs in: topology, asymptotic reasoning,
analysis in higher dimensions.

I A new library for classical analysis in Coq: Mathematical
Components Analysis.
In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves

Strub.

A modular methodology for proofs by computation.
In collaboration with Cyril Cohen.
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The Mathematical Components Analysis library

Classical analysis.

Inspired from Coquelicot.

Compatible with Mathematical Components.

Includes various facilities:
I From our case study:

? Notations for limits and convergence:
f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo.

? Automatic computation of differentials/derivatives.

I Designed for this library:

? A differential function, together with a notation: ’d f x.
? Equational Bachmann-Landau notations:

f = g +o_F e, f =O_F e,

f x = g x +O_(x \near F) e x, f x =o_(x \near F) e x.
? Automatic proof of positivity.
? A set of tactics for delayed instantiation of existential witnesses.
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Filters

A set of sets F is a filter if
I F 6= ∅.
I ∀(P,Q) ∈ F 2,P ∩ Q ∈ F .
I ∀P ∈ F ,∀Q ⊇ P,Q ∈ F .

Examples:
I Neighbourhood filter of a point p, written locally p.

p N

ε
Bε(p)

I Neighbourhood filter of +∞, written Rbar_locally p_infty.
I Image of a filter F by a function y , written filtermap y F .

Convergence:
Before After

filterlim y (locally p) (locally q) y @ p --> q

filterlim y (locally p) (Rbar_locally p_infty) y @ p --> +oo

filterlim y (locally p) (set_locally A) y @ p --> A

filterlim u eventually (Rbar_locally m_infty) u --> -oo or u @ \oo --> -oo

filter_le F (locally p) F --> p

filterlim y F G = filter_le (filtermap y F) G
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The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

∀ε > 0, ∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg )| < ε
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∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε
ε > 0
δf > 0
∀x , |x − a| < δf ⇒ |f (x)− lf | < ε

2
δg > 0
∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

2 guess

∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg )| < ε
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The near tactics: motivating example

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε
ε > 0
δf > 0
∀x , |x − a| < δf ⇒ |f (x)− lf | < ε

2
δg > 0
∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

2

∀x , |x − a| < min(δf , δg )⇒ |f (x) + g(x)− (lf + lg )| < ε
guess
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Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ-reasoning:

The (human) prover has to provide existential witnesses.

Witnesses are (usually) explicit.

Witnesses are (usually) given way before they are used.

⇒ Proof scripts are hard to read and hard to maintain.

⇒ Use an abstraction like filters.
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The near tactics: motivating example (cont.)

To prove
lim
a
f = lf ∧ lim

a
g = lg ⇒ lim

a
(f + g) = lf + lg

Typical ε/δ-reasoning:

∀ε > 0, ∃δf > 0, ∀x , |x − a| < δf ⇒ |f (x)− lf | < ε
∀ε > 0, ∃δg > 0, ∀x , |x − a| < δg ⇒ |g(x)− lg | < ε

∀ε > 0, ∃δ > 0, ∀x , |x − a| < δ ⇒ |f (x) + g(x)− (lf + lg )| < ε
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:
locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a

locally(lf + lg ) ⊆ (f + g)@a
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:
locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a
A ∈ locally(lf + lg )

A ∈ (f + g)@a
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:

locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a
ε > 0
ballε(lf + lg ) ⊆ A unfolding ⇒ introduction of ε

A ∈ (f + g)@a
(i.e. (f + g)−1(A) ∈ locally(a))
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:

locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a
ε > 0
ballε(lf + lg ) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf )) ∩ g−1(ball ε

2
(lg ))) guess

closure by extension
B ∈ (f + g)@a
B ⊆ A
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:

locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a
ε > 0
ballε(lf + lg ) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf )) ∩ g−1(ball ε

2
(lg )))

∀C , f (f −1(C )) ⊆ C ⊆ f −1(f (C ))

f −1(ball ε
2
(lf )) ∩ g−1(ball ε

2
(lg )) ∈ locally(a)

ball ε
2
(lf ) + ball ε

2
(lg ) ⊆ ballε(lf + lg )
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The near tactics: motivating example (cont.)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:

locally(lf ) ⊆ f @a
locally(lg ) ⊆ g@a
ε > 0
ballε(lf + lg ) ⊆ A
B := (f + g)(f −1(ball ε

2
(lf )) ∩ g−1(ball ε

2
(lg )))

closure by intersection
f −1(ball ε

2
(lf )) ∈ locally(a)

g−1(ball ε
2
(lg )) ∈ locally(a)
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The pros and cons of filter reasoning

Improvements:

The explicit existential witnesses are removed.

Parts of the arithmetic is hidden thanks to the abstraction.

But:

There is still a guess: we have to know beforehand how we want to
split the epsilons.

We manipulate sets while (I think) it is more intuitive to reason about
points.

⇒ Reintroduce points without breaking the abstraction and use existential
variables.
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The near tactics: motivating example (conclusion)

Standard filter manipulation:
Proof.
move=> /flim_norm limf /flim_norm limg.
move=> A /locally_normP [_/posnumP[e] lim_e_A]; rewrite locally_simpl.
apply: (@filterS _ _ _

((f + g) @‘ ((f @^-1‘ (ball_ norm lf (e%:num / 2))) ‘&‘ (g @^-1‘ (ball_ norm lg (e%:num / 2)))))).
move=> _ [x [fx gx] <−]; apply: lim_e_A.
by rewrite /= opprD addrACA; apply: normm_lt_split.

by apply: filterS (@preimage_image _ _ _ _) _; apply: filterI; [apply: limf|apply: limg].
Qed.

With the near tactics:
Proof.
move=> /flim_norm limf /flim_norm limg.
apply/flim_normP => _/posnumP[e]; rewrite !near_simpl; near=> x.
by rewrite opprD addrACA normm_lt_split //; near: x; [apply: limf|apply: limg].
Grab Existential Variables. end_near. Qed.
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Key ingredients

A lemma to reintroduce points and use existential variables.

Lemma filter_near_of F (P : in_filter F) Q :

Filter F -> (forall x, P(x) -> Q(x)) -> Q ∈ F.

A notation ∀x nearF , Q(x), standing for Q ∈ F , to invite the user to
reason about points.

The fact that filters are closed by intersection, to accumulate
properties.
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The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Filter reasoning:
f @a→ lf
g@a→ lg

(f + g)@a→ (lf + lg )
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The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε

∀ε > 0, ∀x near a, |f (x) + g(x)− (lf + lg )| < ε
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Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0 regular intro

∀x near a, |f (x) + g(x)− (lf + lg )| < ε
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The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0
x near a, near intro

|(f (x)− lf ) + (g(x)− lg )| < ε
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The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0
x near a,

|f (x)− lf | < ε
2

|g(x)− lg | < ε
2
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The near tactics: motivating example (end)

To prove

f @a→ lf ⇒ g@a→ lg ⇒ (f + g)@a→ (lf + lg )

Improved filter reasoning:

∀ε > 0, ∀x near a, |f (x)− lf | < ε
∀ε > 0, ∀x near a, |g(x)− lg | < ε
ε > 0

near revert
∀x near a, |f (x)− lf | < ε

2
∀x near a, |g(x)− lg | < ε

2
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Back to the case study

Lines of code: 1

Using Coquelicot Using our library

LaSalle’s invariance principle ∼ 370 ∼ 370

Inverted pendulum ∼ 980 ∼ 900

∼ 70 additional lines of code could be removed with a better compatibility
between Mathematical Components and tactics such as ring and
field.

1Not counting the parts that were integrated to our library.
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Conclusion

A case study in control theory:

Generalisation of LaSalle’s invariance principle.

A corrected proof of soundness for a control function for the inverted
pendulum.

A new library for classical analysis:

Compatible with Mathematical Components.

New notations and tools (limit notations, Bachmann-Landau
notations, near tactics).

Some bits of automation:

Computation of differentials and derivatives.

A new reflection methodology based on refinements.
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Perspectives

Towards certified embedded software.

Integrals and Cauchy-Lipschitz Theorem.

Better accessibility for non-expert users.

Thank you for your attention!
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Reflection

Term of type T Abstract syntax tree

Proven property Boolean value

x
reification

e

computation with A

true

interpretation and Lemma A_sound

P x

proof by reflection

Lemma A_sound (e : AST) : A e = true -> P (interp e).
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Example: the ring tactic

Arithmetic expressions Abstract syntax trees

Proven equality Boolean value

Sparse Horner polynomials

t1 and t2

reification

e1 and e2

equality test

trueinterpretation and

Lemma ring_correct

t1=t2

ring

normalisation

equality test

Lemma ring_correct (e1 e2 : AST) (l : map) :

Peq (norm e1) (norm e2) = true ->

interp l e1 = interp l e2.
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A more modular methodology

Term of type T Proof-oriented object Computation-oriented object

Boolean valueBoolean valueProven property

x
reification

p
refinement

c

computation with A

true

Parametricity of A

A p = trueinterpretation and

Lemma A_sound

proof by reflection with refinement

P x

Lemma A_sound (p : PO_type) : A p = true -> P (interp p).

Main ingredients: generic programming and refinement.
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Almost example: the coqeal ring tactic

Arithmetic expressions

AST

Proof-oriented polynomials Computation-oriented polynomials

Computation-oriented polynomialsProof-oriented polynomialsProven equality

reification computation

depolyfication

reflexivity

polyfication

coqeal vm compute eq2coqeal_ring

refinement

computation

spec and

vm compute

Lemma polyficationP (e : AST) (l : map) :

interp l e = eval_poly l (ast_to_poly e).
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