Damien Rouhling

Université Côte d'Azur, Inria, France

September 30, 2019

Damien Rouhling

Formalisation Tools for Classical Analysis

The inverted pendulum is a standard example for testing control techniques.

• Goal: stabilize the pendulum on its unstable equilibrium.

• Control function: force fctrl applied to the cart.

Damien Rouhling

Formalisation Tools for Classical Analysis

Free fall

$$\ddot{y} = -g$$

Free fall

Pendulum

Pendulum

 $\ddot{\theta} + \frac{g}{I}\theta = 0$

Pendulum

Formalisation Tools for Classical Analysis

Inverted Pendulum

 $M(q)\ddot{q}+C\left(q,\dot{q}
ight) \dot{q}+G\left(q
ight) = au$

Inverted Pendulum

Lozano, Fantoni, Block (2000)

- We obtain different logics by selecting different allowed reasoning steps.
- Classical reasoning allows for standard reasoning steps in mathematics: proof by contradiction, excluded middle, the axiom of choice are allowed.

- We obtain different logics by selecting different allowed reasoning steps.
- Classical reasoning allows for standard reasoning steps in mathematics: proof by contradiction, excluded middle, the axiom of choice are allowed.

LaSalle (1960):

We say also that x(t) approaches a set M as t approaches infinity, if each $\epsilon > 0$ there is a T > 0 with the property that for each t > T there is a p in M with $||x(t) - p|| < \epsilon$; that is, for all t > T the points x(t) are within a distance ϵ of M. For instance, if x(t) is bounded for t > 0, then x(t) approaches its positive limiting set Γ^* as $t \to \infty$ [If this were not so, here would be an $\epsilon > 0$ with the property that for each T > 0 there is a t > T, such that $||x(t) - p|| \ge \epsilon$ for all p in Γ^* . Hence, there would be a sequence t, tending to infinity with n and such that $||x(t_n) - p|| \ge \epsilon$ for all p in Γ^* . But since x(t) is bounded for $t \ge 0$, the sequence $x(t_n)$ has a limit point which is in Γ^* , which is a contradiction. This proves the proposition. The way in

Contributions

- Formal proof of soundness of a control function for the inverted pendulum.
 - Formal proof of a generalised version of LaSalle's invariance principle. In collaboration with Cyril Cohen.
 - Application of the formal version of LaSalle's invariance principle to the inverted pendulum.
- Reusable tools for formal proofs in: topology, asymptotic reasoning, analysis in higher dimensions.
 - ► A new library for classical analysis in COQ: MATHEMATICAL COMPONENTS ANALYSIS.

In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

• A modular methodology for proofs by computation.

In collaboration with Cyril Cohen.

Contributions

- Formal proof of soundness of a control function for the inverted pendulum.
 - Formal proof of a generalised version of LaSalle's invariance principle. In collaboration with Cyril Cohen.
 - Application of the formal version of LaSalle's invariance principle to the inverted pendulum.
- Reusable tools for formal proofs in: topology, asymptotic reasoning, analysis in higher dimensions.
 - ► A new library for classical analysis in Coq: MATHEMATICAL COMPONENTS ANALYSIS.

In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

• A modular methodology for proofs by computation.

In collaboration with Cyril Cohen.

Intuition of LaSalle's invariance principle

The differential equation as a vector field: $\dot{y} = F(y)$.

Intuition of LaSalle's invariance principle

Contour map of a Lyapunov function V:

Intuition of LaSalle's invariance principle

Requirements:

- Invariant compact set K.
- Lyapunov function V.
- Regularity assumptions.

Conclusion:

The solutions of $\dot{y} = F(y)$ starting in K converge to a set where $\dot{V} = 0$.

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .
 - Strengthen the conclusion.

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .
 - Strengthen the conclusion.

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .
 - Strengthen the conclusion.
- Fill the gaps in the proof.

```
LaSalle (1960):
```

infinity with n and such that $x(t_n) \to p$ as $n \to \infty$. One of the fundamental properties of limiting sets is the following: If x(t) is bounded for $t \ge 0$, then its positive limiting set Γ^+ is a nonempty, compact, invariant set.

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .
 - Strengthen the conclusion.
- Fill the gaps in the proof.
- Formalise topological notions: compact sets and closed sets.

LaSalle (1960):

Proof. Let x(t) be a solution initially in Ω . Since $\dot{V}(x) \leq 0$ in Ω , V(x(t)) is a nonincreasing function of t. V(x), being continuous on the compact set Ω , is bounded from below on Ω . Therefore, $\dot{V}(x(t))$ has a limit c as $t \to \infty$. Note also that the positive limiting set Γ^* is in Ω (because Ω is a closed set), and since V is continuous on Ω , $V(x) \equiv \underline{c}$ on Γ^* . Γ^* is an invariant set, and hence $\dot{V}(x) = 0$ on Γ^* . Thus, Γ^* is in M. This implies, as was pointed out above, that $x(t) \to M$ as $t \to \infty$. All solutions starting in Ω approach M as t approaches infinity.

- Generalise the principle:
 - Weaken the hypotheses: F(0) = 0, regularity assumptions, \mathbb{R}^n .
 - Strengthen the conclusion.
- Fill the gaps in the proof.
- Formalise topological notions: compact sets and closed sets.
- Develop notations for limits.

LaSalle (1960):

infinity with n and such that $x(t_n) \to p$ as $n \to \infty$. One of the fundamental properties of limiting sets is the following: If x(t) is bounded for $t \ge 0$, then its positive limiting set Γ^+ is a nonempty, compact, invariant set.

f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo

Contributions

- Formal proof of soundness of a control function for the inverted pendulum.
 - ► Formal proof of a generalised version of LaSalle's invariance principle. In collaboration with Cyril Cohen.
 - Application of the formal version of LaSalle's invariance principle to the inverted pendulum.
- Reusable tools for formal proofs in: topology, asymptotic reasoning, analysis in higher dimensions.
 - ► A new library for classical analysis in Coq: MATHEMATICAL COMPONENTS ANALYSIS.

In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

• A modular methodology for proofs by computation.

In collaboration with Cyril Cohen.

Soundness property for a control function

- Goal: the pendulum converges to its unstable equilibrium.
- Properties proven by Lozano, Fantoni and Block:
 - The pendulum converges to a homoclinic orbit:

$$\frac{1}{2}ml^2\dot{\theta}^2 = mgl\left(1 - \cos\theta\right).$$

• The cart converges to its initial position: x = 0 and $\dot{x} = 0$.

Property: the pendulum converges to a set where

$$\frac{1}{2}ml^2\dot{ heta}^2 = mgl\left(1 - \cos\theta\right)$$
 and $x = 0$ and $\dot{x} = 0$.

Proof: LaSalle's invariance principle with a well-chosen Lyapunov function V and a well-chosen compact set K.

Proof of soundness (cont.)

 The laws of Physics give a second-order differential equation. We transform the equation on (x, θ) into a first-order equation on

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

Proof of soundness (cont.)

 The laws of Physics give a second-order differential equation. We transform the equation on (x, θ) into a first-order equation on

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

 \Rightarrow Take into account the relation between the variables, e.g.:

$$\dot{p_0} = p_1.$$

Proof of soundness (cont.)

 The laws of Physics give a second-order differential equation. We transform the equation on (x, θ) into a first-order equation on

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

 \Rightarrow Take into account the relation between the variables, e.g.:

$$\dot{p_0} = p_1.$$

 We still lose pieces of information. The invariant compact set K will help keeping them as invariants.

$$\mathcal{K} = \left\{ p \in \mathbb{R}^5 \mid p_2^2 + p_3^2 = 1 ext{ and } V\left(p
ight) \leqslant k_0
ight\}.$$

Correcting the proof

Errors encountered:

- Forgotten constant.
- Circular dependency.
- Wrong manipulation of equations:

$$\forall t \in I. \ f(t) = g(t) \quad \Rightarrow \quad \forall t \in I. \ \dot{f}(t) = \dot{g}(t).$$

Correcting the proof

Errors encountered:

- Forgotten constant.
- Circular dependency.
- Wrong manipulation of equations:

$$\forall t \in I. \ f(t) = g(t) \quad \Rightarrow \quad \forall t \in I. \ f(t) = \dot{g}(t).$$

If I is not reduced to a point.

Correcting the proof

Errors encountered:

- Forgotten constant.
- Circular dependency.
- Wrong manipulation of equations:

$$\forall t \in I. \ f(t) = g(t) \quad \Rightarrow \quad \forall t \in I. \ f(t) = \dot{g}(t).$$

If I is not reduced to a point.

Consequences: minor adaptations and the necessity to find a new proof for some points.
Soundness theorem for the inverted pendulum

$$\frac{1}{2}ml^2\dot{ heta}^2 = mgl\left(1 - \cos\theta\right)$$
 and $x = 0$ and $\dot{x} = 0$.

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

Definition homoclinic_orbit := [set p : 'rV[R]_5 | p[0] = 0 ^ p[1] = 0 ^ (1 / 2) * m * (1 ^ 2) * (p[4] ^ 2) = ...].

Soundness theorem for the inverted pendulum

$$\frac{1}{2}ml^2\dot{ heta}^2 = mgl\left(1 - \cos\theta\right)$$
 and $x = 0$ and $\dot{x} = 0$.

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

Lemma cvg_to_homoclinic_orbit (p : 'rV[R]_5) : $p \in K \rightarrow sol p @ +oo --> homoclinic_orbit.$

Soundness theorem for the inverted pendulum

$$\frac{1}{2}ml^2\dot{\theta}^2 = mgl\left(1 - \cos\theta\right) \quad \text{and} \quad x = 0 \quad \text{and} \quad \dot{x} = 0.$$

$$p = (p_0, p_1, p_2, p_3, p_4) = \left(x, \dot{x}, \cos \theta, \sin \theta, \dot{\theta}\right).$$

Definition homoclinic_orbit :=
 [set p : 'rV[R]_5 | p[0] = 0 ^ p[1] = 0 ^
 (1 / 2) * m * (1 ^ 2) * (p[4] ^ 2) = ...].

Lemma cvg_to_homoclinic_orbit (p : 'rV[R]_5) : $p \in K \rightarrow sol p @ +oo \longrightarrow homoclinic_orbit.$

Cauchy-Lipschitz / Picard-Lindelöf

A few aspects of the formalisation

• Formalisation of \mathbb{R}^n .

 \Rightarrow Combination of the COQUELICOT and MATHEMATICAL COMPONENTS libraries.

A few aspects of the formalisation

• Formalisation of \mathbb{R}^n .

 \Rightarrow Combination of the COQUELICOT and MATHEMATICAL COMPONENTS libraries.

• Topological spaces and Tychonoff's Theorem (extra).

A few aspects of the formalisation

• Formalisation of \mathbb{R}^n .

 \Rightarrow Combination of the COQUELICOT and MATHEMATICAL COMPONENTS libraries.

- Topological spaces and Tychonoff's Theorem (extra).
- Tools for automatic computation of differentials/derivatives.

Lozano, Fantoni, Block (2000):

The Lyapunov function candidate (13) becomes $V = \frac{k_E}{2}E^2 + \frac{k_v}{2}z_2^2 + \frac{k_x}{2}z_1^2.$ (29) which leads to $\dot{V} = -k_{\rm dx}z_2^2.$ (32)

Goal: Prove that the derivative at point x of fun $y \Rightarrow 1 + y$ is 1.

Goal: Prove that the derivative at point x of fun $y \Rightarrow 1 + y$ is 1.

is_derive (fun y => 1 + y) x 1

auto_derive

Goal: Prove that the derivative at point x of fun $y \Rightarrow 1 + y$ is 1.

is_derive (fun y => 1 + y) x 1

evar_last

Goal: Prove that the derivative at point x of fun $y \Rightarrow 1 + y$ is 1.

2 subgoals

?d : R

is_derive (fun y => 1 + y) x ?d
subgoal 2 is:

```
?d = 1
```

```
Lemma is_derive_plus (f g : K -> V) (x : K) (df dg : V) :
    is_derive f x df -> is_derive g x dg ->
    is_derive (fun y => f y + g y) x (df + dg).
```

Goal: Prove that the derivative at point x of fun y => 1 + y is 1. 3 subgoals

 $?d_1, ?d_2 : R$ is_derive (fun $_ => 1$) x ?d₁ subgoal 2 is: is_derive id x ?d₂ subgoal 3 is: $?d_1 + ?d_2 = 1$

Lemma is_derive_const (a : V) (x : K) : is_derive (fun _ : K => a) x 0.

Goal: Prove that the derivative at point x of fun $y \Rightarrow 1 + y$ is 1.

```
2 subgoals
```

```
Lemma is_derive_id (x : K) :
    is_derive (fun t : K => t) x 1.
```


0 + 1 = 1

Damien Rouhling

Formalisation Tools for Classical Analysis

September 30, 2019 18 / 32

Using a type class deriv to store is_derive_plus, is_derive_const and is_derive_id in a data base of differentiation rules, we automatically transform

Type classes for the computation of differentials/derivatives

- Lightweight implementation.
- Easy to extend with new rules.
- Palliate the lack of an auto_diff tactic.
- Possibility to adapt the implementation to avoid giving the value explicitely.

Contributions

- Formal proof of soundness of a control function for the inverted pendulum.
 - ► Formal proof of a generalised version of LaSalle's invariance principle. In collaboration with Cyril Cohen.
 - Application of the formal version of LaSalle's invariance principle to the inverted pendulum.
- Reusable tools for formal proofs in: topology, asymptotic reasoning, analysis in higher dimensions.
 - ► A new library for classical analysis in COQ: MATHEMATICAL COMPONENTS ANALYSIS.

In collaboration with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

• A modular methodology for proofs by computation.

In collaboration with Cyril Cohen.

The MATHEMATICAL COMPONENTS ANALYSIS library

- Classical analysis.
- Inspired from COQUELICOT.
- Compatible with MATHEMATICAL COMPONENTS.
- Includes various facilities:
 - From our case study:
 - * Notations for limits and convergence:
 - f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo.
 - ★ Automatic computation of differentials/derivatives.
 - Designed for this library:
 - \star A differential function, together with a notation: 'd f x.
 - * Equational Bachmann-Landau notations:

 $f = g + o_F e, f = O_F e,$

- f x = g x +0_(x \near F) e x, f x =0_(x \near F) e x.
- ★ Automatic proof of positivity.
- \star A set of tactics for delayed instantiation of existential witnesses.

- A set of sets F is a filter if
 - ► $F \neq \emptyset$.
 - ▶ \forall (P, Q) \in $F^2, P \cap Q \in F$.
 - $\blacktriangleright \forall P \in F, \forall Q \supseteq P, Q \in F.$
- Examples:
 - Neighbourhood filter of a point p, written locally p.

- A set of sets F is a filter if
 - ► $F \neq \emptyset$.
 - ▶ \forall (P, Q) \in $F^2, P \cap Q \in F$.
 - $\blacktriangleright \forall P \in F, \forall Q \supseteq P, Q \in F.$
- Examples:
 - Neighbourhood filter of a point p, written locally p.
 - ▶ Neighbourhood filter of $+\infty$, written Rbar_locally p_infty.

$$N \qquad M \quad [M; +\infty)$$

- A set of sets F is a filter if
 - $F \neq \emptyset$.
 - ▶ \forall (P, Q) \in $F^2, P \cap Q \in F$.
 - $\blacktriangleright \forall P \in F, \forall Q \supseteq P, Q \in F.$
- Examples:
 - Neighbourhood filter of a point p, written locally p.
 - ▶ Neighbourhood filter of $+\infty$, written Rbar_locally p_infty.
 - ▶ Image of a filter *F* by a function *y*, written filtermap *y F*.

filtermap
$$y \ F \ := \left\{A \mid y^{-1}(A) \in F \right\}.$$

- A set of sets F is a filter if
 - ► $F \neq \emptyset$.
 - ▶ \forall (P, Q) \in $F^2, P \cap Q \in F$.
 - $\blacktriangleright \forall P \in F, \forall Q \supseteq P, Q \in F.$
- Examples:
 - Neighbourhood filter of a point p, written locally p.
 - ▶ Neighbourhood filter of $+\infty$, written Rbar_locally p_infty.
 - ▶ Image of a filter *F* by a function *y*, written filtermap *y F*.

Convergence:

Before	After
filterlim y (locally p) (locally q)	у@р> q
filterlim y (locally p) (Rbar_locally p_infty)	y @ p> +oo
filterlim y (locally p) (set_locally A)	у © р> А
filterlim u eventually (Rbar_locally m_infty)	u> -oo or u @ \oo> -oo
filter_le F (locally p)	F> p

```
filterlim y F G = filter_le (filtermap y F) G
```

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{aligned}$$

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow \ |f(x) + g(x) - (l_f + l_g)| < \varepsilon$

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \end{array}$$

$$\exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon$$

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ \delta_f > 0 \\ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \frac{\varepsilon}{2} \\ \delta_g > 0 \\ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \frac{\varepsilon}{2} \end{array}$$

$$\exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon$$

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ \delta_f > 0 \\ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \frac{\varepsilon}{2} \\ \delta_g > 0 \\ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \frac{\varepsilon}{2} \end{aligned}$$

$$\forall x, \ |x-a| < \min(\delta_f, \delta_g) \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon$$

guess

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ -reasoning:

- The (human) prover has to provide existential witnesses.
- Witnesses are (usually) explicit.
- Witnesses are (usually) given way before they are used.

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ -reasoning:

- The (human) prover has to provide existential witnesses.
- Witnesses are (usually) explicit.
- Witnesses are (usually) given way before they are used.

 \Rightarrow Proof scripts are hard to read and hard to maintain.

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ -reasoning:

- The (human) prover has to provide existential witnesses.
- Witnesses are (usually) explicit.
- Witnesses are (usually) given way before they are used.
- \Rightarrow Proof scripts are hard to read and hard to maintain.
- \Rightarrow Use an abstraction like filters.

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{array}$$

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon$

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

 $ext{locally}(I_f) \subseteq f @a \\ ext{locally}(I_g) \subseteq g @a \\$

$$locally(I_f + I_g) \subseteq (f + g)@a$$

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$egin{aligned} & ext{locally}(I_f) \subseteq f@a \ & ext{locally}(I_g) \subseteq g@a \ & A \in ext{locally}(I_f + I_g) \end{aligned}$$

$$A \in (f+g)@a$$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Filter reasoning:

$$\begin{split} & \text{locally}(I_f) \subseteq f @a \\ & \text{locally}(I_g) \subseteq g @a \\ & \varepsilon > 0 \\ & \text{ball}_{\varepsilon}(I_f + I_g) \subseteq A \quad \text{unfolding} \Rightarrow \text{introduction of } \varepsilon \end{split}$$

$$A \in (f+g)$$
 a (i.e. $(f+g)^{-1}(A) \in \texttt{locally}(a)$)

To prove

$$f @a \rightarrow l_f \Rightarrow g @a \rightarrow l_g \Rightarrow (f + g) @a \rightarrow (l_f + l_g)$$

Filter reasoning:

$$\begin{split} & \text{locally}(l_f) \subseteq f @a \\ & \text{locally}(l_g) \subseteq g @a \\ & \varepsilon > 0 \\ & \text{ball}_{\varepsilon}(l_f + l_g) \subseteq A \\ & B := (f + g)(f^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_f)) \cap g^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_g))) \qquad \text{guess} \end{split}$$

closure by extension

$$B \in (f+g)$$
@a $B \subseteq A$

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$\begin{split} &\text{locally}(l_f) \subseteq f@a\\ &\text{locally}(l_g) \subseteq g@a\\ &\varepsilon > 0\\ &\text{ball}_{\varepsilon}(l_f + l_g) \subseteq A\\ &B := (f + g)(f^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_f)) \cap g^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_g))) \end{split}$$

$$\begin{aligned} \forall C, \ f(f^{-1}(C)) \subseteq C \subseteq f^{-1}(f(C)) \\ f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_f)) \cap g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_g)) \in \operatorname{locally}(a) \\ \operatorname{ball}_{\frac{\varepsilon}{2}}(I_f) + \operatorname{ball}_{\frac{\varepsilon}{2}}(I_g) \subseteq \operatorname{ball}_{\varepsilon}(I_f + I_g) \end{aligned}$$

Damien Rouhling

Formalisation Tools for Classical Analysis

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Filter reasoning:

$$\begin{split} &\text{locally}(l_f) \subseteq f@a\\ &\text{locally}(l_g) \subseteq g@a\\ &\varepsilon > 0\\ &\text{ball}_{\varepsilon}(l_f + l_g) \subseteq A\\ &B := (f + g)(f^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_f)) \cap g^{-1}(\text{ball}_{\frac{\varepsilon}{2}}(l_g))) \end{split}$$

closure by intersection

$$f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_f)) \in \operatorname{locally}(a) \ g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_g)) \in \operatorname{locally}(a)$$

The pros and cons of filter reasoning

Improvements:

- The explicit existential witnesses are removed.
- Parts of the arithmetic is hidden thanks to the abstraction.

But:

- There is still a guess: we have to know beforehand how we want to split the epsilons.
- We manipulate sets while (I think) it is more intuitive to reason about points.
The pros and cons of filter reasoning

Improvements:

- The explicit existential witnesses are removed.
- Parts of the arithmetic is hidden thanks to the abstraction.

But:

- There is still a guess: we have to know beforehand how we want to split the epsilons.
- We manipulate sets while (I think) it is more intuitive to reason about points.

 \Rightarrow Reintroduce points without breaking the abstraction and use existential variables.

The near tactics: motivating example (conclusion)

Standard filter manipulation:

With the near tactics:

Proof.
move=> /flim_norm limf /flim_norm limg.
apply/flim_normP => _/posnumP[e]; rewrite !near_simpl; near=> x.
by rewrite opprD addrACA normm_lt_split //; near: x; [apply: limf|apply: limg].
Grab Existential Variables. end_near. Qed.

• A lemma to reintroduce points and use existential variables. Lemma filter_near_of F (P : in_filter F) Q :

Filter F -> (forall x, $P(x) \rightarrow Q(x)$) -> $Q \in F$.

- A notation ∀x near F, Q(x), standing for Q ∈ F, to invite the user to reason about points.
- The fact that filters are closed by intersection, to accumulate properties.

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$f@a \rightarrow l_f$$

 $g@a \rightarrow l_g$

$$(f+g)$$
@ $a \rightarrow (l_f + l_g)$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Improved filter reasoning:

$$\begin{array}{l} \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |g(x) - l_g| < \varepsilon \end{array}$$

 $\forall \varepsilon > 0, \ \forall x \operatorname{near} a, \ |f(x) + g(x) - (l_f + l_g)| < \varepsilon$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

$$\begin{array}{l} \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \quad \text{regular intro} \end{array}$$

$$\forall x \operatorname{near} a, |f(x) + g(x) - (l_f + l_g)| < \varepsilon$$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

$$\begin{aligned} \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ x \text{ near } a, \ \ \text{near intro} \end{aligned}$$

$$|(f(x) - l_f) + (g(x) - l_g)| < \varepsilon$$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

$$\begin{aligned} \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |f(x) - l_f| &< \varepsilon \\ \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |g(x) - l_g| &< \varepsilon \\ \varepsilon &> 0 \\ x \text{ near } a, \end{aligned}$$

$$|f(x) - l_f| < \frac{\varepsilon}{2} \\ |g(x) - l_g| < \frac{\varepsilon}{2}$$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

$$\begin{array}{l} \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \end{array}$$

$$\begin{array}{ll} \text{near revert} & \forall x \text{ near } a, \ |f(x) - l_f| < \frac{\varepsilon}{2} \\ \forall x \text{ near } a, \ |g(x) - l_g| < \frac{\varepsilon}{2} \end{array}$$

Lines of code: ¹

	Using COQUELICOT	Using our library
LaSalle's invariance principle	\sim 370	~ 370
Inverted pendulum	~ 980	~ 900

 \sim 70 additional lines of code could be removed with a better compatibility between MATHEMATICAL COMPONENTS and tactics such as ring and field.

¹Not counting the parts that were integrated to our library.

Conclusion

A case study in control theory:

- Generalisation of LaSalle's invariance principle.
- A corrected proof of soundness for a control function for the inverted pendulum.
- A new library for classical analysis:
 - Compatible with MATHEMATICAL COMPONENTS.
 - New notations and tools (limit notations, Bachmann-Landau notations, near tactics).

Some bits of automation:

- Computation of differentials and derivatives.
- A new reflection methodology based on refinements.

- Towards certified embedded software.
- Integrals and Cauchy-Lipschitz Theorem.
- Better accessibility for non-expert users.

- Towards certified embedded software.
- Integrals and Cauchy-Lipschitz Theorem.
- Better accessibility for non-expert users.

Thank you for your attention!

Reflection

Lemma A_sound (e : AST) : A e = true -> P (interp e).

Example: the ring tactic


```
Lemma ring_correct (e<sub>1</sub> e<sub>2</sub> : AST) (l : map) :
Peq (norm e<sub>1</sub>) (norm e<sub>2</sub>) = true ->
interp l e<sub>1</sub> = interp l e<sub>2</sub>.
```

A more modular methodology

Lemma A_sound (p : PO_type) : A p = true -> P (interp p).

Main ingredients: generic programming and refinement.

Almost example: the coqeal_ring tactic

Lemma polyficationP (e : AST) (l : map) :
interp l e = eval_poly l (ast_to_poly e).