
Formalization Techniques for Asymptotic Reasoning
in Classical Analysis

REYNALD AFFELDT

National Institute of Advanced Industrial Science and Technology, Japan

CYRIL COHEN and DAMIEN ROUHLING

Université Côte d'Azur, Inria, France

Formalizing analysis on a computer involves a lot of �epsilon-delta� reasoning, while informal
reasoning may use some asymptotic hand-waving. Whether or not the arithmetic details are
hidden using some abstraction like �lters, a human user eventually has to break it down for
the proof assistant anyway, and provide a witness for the existential variable �delta�. We describe
formalization techniques that take advantage of existential variables to delay the input of witnesses
until a stage where the proof assistant can actually infer them. We use these techniques to prove
theorems about classical analysis and to provide equational Bachmann-Landau notations. This
partially restores the simplicity of informal hand-waving without compromising the proof. As
expected this also reduces the size of proof scripts and the time to write them, and it also makes
proofs more stable.

1. INTRODUCTION

In classical analysis, formalization problems occur when we have local reasoning,
i.e. proof of facts that are only true in some neighborhood. One very early and triv-
ial example when such reasoning occurs is to prove that the sum of two converging
functions is converging. Indeed from{

∀ε > 0. ∃δf > 0. ∀x. |x− a| < δf ⇒ |f(x)− lf | < ε
∀ε > 0. ∃δg > 0. ∀x. |x− a| < δg ⇒ |g(x)− lg| < ε

,

we get ∀ε > 0. ∃δ > 0. ∀x. |x− a| < δ ⇒ |f(x) + g(x)− (lf + lg)| < ε.

Formally proving this requires to show the existence of such a δ, here it may be the
minimum of the two δf , δg we can get from the hypotheses applied to ε

2 . Giving δ
explicitly makes the proof less stable and less readable than it would be with a
�correct� informal reasoning. By stable proof, we mean that changes in its state-
ment, or in statements it depends on, will break only the parts of the proof where
the changes actually matter. When we provide an existential witness way before
using it, the distance between the place it is used (and breaks), and the place where
it is introduced, makes it di�cult to maintain the proof script. Indeed, the main-
tainer has to go back and forth in the proof script to understand how changing the
existential leads to breakage.
Filters slightly improve stability and readability by hiding arithmetic reason-

ing, as successfully demonstrated by previous work in the Isabelle/HOL library
[HIH13] and in the Coquelicot library [BLM15]. However, the explicit existential
quanti�ers are still replaced by forward reasoning with statements that depend on

Journal of Formalized Reasoning Vol.11, No.1, 2018, Pages 43�76.

how the proof will be led. Our �rst contribution is to solve this problem by giving
a set of tactics and lemmas to handle existential variables in a consistent way.
Another common tool in informal classical analysis is asymptotic developments

using Bachmann-Landau notations, often called little-o and big-O notations [Bac94,
Lan09]. They are used to write developments such as

f(x) = a0 + a1x+ . . .+ anx
n + o

x→0
(xn)

or in the de�nition of di�erential: it is the linear operator dfx such that

f(x+ h) = f(x) + dfx(h) + o (h) .

Using Bachmann-Landau notations, one performs arithmetic operations with devel-
opments and uses laws like o

x→0
(xn)+ o

x→0
(xn) = o

x→0
(xn). At �rst sight, the abuse

of notation seems to make such a law impossible to represent as an equation on
functions in a formal logic. Our second contribution is to provide a solution for this
problem with a set of notations and lemmas which make the user believe that she is
doing arithmetic with little-o and big-O at the same time. To our knowledge, this
is the �rst formalization that mixes in a purely equational manner little-o and big-
O functions with arithmetic operations. The formalizations of Bachmann-Landau
notations [AD04, BCF+13, BLM15, Ebe17, GCP18] we know about either handle
sets of functions or do not mix little-o and big-O.
We believe that the contributions discussed in this article are a key to make

proofs in classical analysis easier in Coq [Coq18], both in the development of an
analysis library and in its use. We extensively tested our tools in an on-going e�ort
to provide Mathematical Components [G+15] with analysis [ACM+18a]. Both
the development from this article and its numerous applications can be found in
the latter repository.

Outline of this Article. In Sect. 2, we remind the reader of the concept of �lter
and explain how we extend the ideas from the Coquelicot library with a few
structures and notations to make it look closer to mathematical practice. Then, in
Sect. 3, we describe our methodology to make explicit existential quanti�ers disap-
pear from the proof �ow; it can be seen as a special introduction rule. We provide
a commented example of script that has been considerably shortened and made
more stable using this methodology. In Sect. 4, we introduce our implementation
of Bachmann-Landau notations. We discuss in particular in Sect. 4.1 how we rep-
resent laws using Bachmann-Landau notations as equations on functions in formal
logic. We also give a few examples of informal reasoning that can actually be done
as such with our techniques. Our formalization primarily targets classical analysis,
which naturally calls for an extension of Coq's otherwise constructive logic. In
Sect. 5, we explain the axioms on which our techniques rely, how we justify them,
and why they are important to develop practical asymptotic reasoning in Coq. We
discuss related work in Sect. 6 where we review in particular other formal proof
libraries for Bachmann-Landau notations. Finally, we conclude in Sect. 7. We also
provide in Appendix A a short overview of the contents of the Mathematical
Components Analysis library [ACM+18a], which is used both as a basis for our
work and as a test base. We believe our work does not strongly depend on it, but

44

Standard Coq/Mathematical Components notations:

exists2 x, P x & Q x existence of an x that satis�es both P and Q

.1, .2 �rst, second projection of a pair
@^~ x application at x, i.e. fun f => f x

{linear U -> V} linear functions of type U -> V

De�nitions/notations from [CR17]:

set A A -> Prop

A `<=` B set inclusion
[set a | P a] the set of elements a that satisfy P

F --> G reverse set inclusion for �lters F ⊇ G
f @ F �lter f(F), see Sect. 2.3
+oo +∞

Fig. 1. Notations from previous work used in this article

a description might be useful for the reader to understand how our tools �t in the
bigger picture and to help her �nd many examples of use.

About Notations. In this article, we introduce a number of notations that we
explain as they appear (and summarize at the end of this article in Fig. 3). For
the convenience of the reader, we summarize in Fig. 1 other standard Coq and
Mathematical Components notations, as well as notations from previous work.
This article uses and extends SSReflect tactics. For explanations about the

standard ones, the reader is referred to a tutorial introduction [GM10], as well as a
precise documentation [GMT16] available online. As for the new tactics introduced
in this article (namely, near=>, near · =>, near:, and end_near), they are explained
in details in Sect. 3.2. They are designed as a conservative extension of SSReflect,
except that they overload the tacticals => and : for introduction and discharge of
hypotheses.
Coq comes with a mechanism for implicit arguments: thanks to type constraints,

some arguments in de�nitions can be inferred. We follow in this article Coq's
syntax for implicit arguments. When giving a new de�nition, implicit arguments
are declared using curly brackets, as in

Definition fct {arg1 : type1} (arg2 : type2) :=

Then, arg1 is omitted in subsequent uses of fct, which all are of the form fct arg2.

2. ABSTRACTING ASYMPTOTIC STATEMENTS USING FILTERS

The use of �lters in the Coquelicot library [BLM15] and the Isabelle/HOL
library [HIH13] proved that they de�ne a good abstraction for convergence proofs in
analysis. We �rst recall in Sect. 2.1 the de�nition of �lters and give a few examples.
Then, we explain in Sect. 2.2 how our hierarchy of topological structures compares
to the one of Coquelicot. We try to give just enough details to explain how to
use our tools in practice. More details about these can be found in Appendix A.
Finally, we detail in Sect. 2.3 the structures and notations we use in order to make
the use of �lters more natural in Coq.

45

2.1 De�nition and Use of Filters

Let us �rst start with the de�nition of �lters. A �lter F on T is a set of sets of
elements of T that satis�es the following three laws:

T ∈ F, ∀A,B ∈ F. A ∩B ∈ F and ∀A,B. A ⊆ B ⇒ A ∈ F ⇒ B ∈ F.

Our Coq representation of �lters is exactly the same as in the Coquelicot
library, i.e. the propositional predicate Filter F, which states that the set of sets
F : set (set T), is a �lter. Additionally, this predicate is a class, in order to
trigger type-class inference when needed1.

Class Filter {T : Type} (F : set (set T)) := {

filterT : F setT ;

filterI : forall P Q : set T, F P -> F Q -> F (P `&` Q) ;

filterS : forall P Q : set T, P `<=` Q -> F P -> F Q

}.

We additionally provide the type filter_on T of �lters on a type T, with an
implicit coercion so that F : filter_on T may also be seen as a set of sets on T,
satisfying the property Filter F.

Structure filter_on T := FilterType {

filter :> (T -> Prop) -> Prop;

filter_class : Filter filter

}.

This structure is used to register canonical �lter instances in addition to type-
class instances. Eventually, we might unify both inference mechanisms by choosing
canonical structures over type-classes. The topic of structure inference is how-
ever beyond the scope of this article, and we recommend dedicated papers about
it. [SO08, MT13]
The most important sort of �lters used for analysis and local reasoning is the

�lter of neighborhoods. The set of neighborhoods of a point x indeed de�nes a
�lter, called locally(x) in Coquelicot [BLM15] and in our work. In Coquelicot,
the notion of neighborhood is de�ned using balls in a uniform space. Thus, the
neighborhood �lter of x is

locally(x) = {A | ∃ε > 0. ballε(x) ⊆ A} .

Balls can also be used to de�ne another �lter which is the set of entourages. An
entourage is a set that is a �neighborhood� of the diagonal set {(x, x) | x ∈ T}, i.e. a
set that contains all the pairs (x, y) such that y ∈ ballε(x) for some positive ε.
An important point to notice here is the fact that the �lter of entourages is

de�ned as the set of supersets of the family of sets ({(x, y) | y ∈ ballε(x)})ε>0.
In fact, we often use this kind of construction in proofs about �lters. Hence, we

de�ne a function filter_from that takes a family of sets and returns its set of
supersets.

1Unless stated otherwise, the code snippets displayed in this section can be found in [ACM+18a,
�le topology.v].

46

Definition filter_from {I T : Type} (D : set I) (B : I -> set T) :=

[set P | exists2 i, D i & B i `<=` P].

Here, D should be understood as the domain of indices and B de�nes the family. We
also use notations for set comprehension and set inclusion that have been introduced
in a previous work [CR17] (see Fig. 1). If the domain is not empty and if for any
two indices i and j in the domain one can �nd a third index k in the domain such
that Bk ⊆ Bi ∩ Bj , then we say that the family de�nes a �lter base and we prove
that filter_from D B indeed de�nes a �lter.
The entourage �lter is then easily de�ned using filter_from and the family of

sets described above2.

Definition entourages {T : uniformType} : set (set (T * T)):=

filter_from [set eps : R | eps > 0]

(fun eps => [set xy | ball xy.1 eps xy.2]).

Since we are using balls, this de�nition is valid in a uniform space, denoted
by uniformType in our work (note there is an implicit coercion from a uniformType
to its carrier in Type). In fact, a more abstract de�nition of entourages, which does
not rely on balls, could replace balls as primitive for the de�nition of the type
representing uniform spaces. This would lead to an equivalent de�nition of uniform
spaces where the pseudometric is abstracted, but we kept Coquelicot's de�nition
for this work.
We can also use the filter_from function to de�ne the �lter product: if F and G

are respectively �lters on spaces T and U , then the �lter product of F and G is a
�lter on the Cartesian product T × U and is de�ned as the set of supersets of the
family (P1 ‘∗‘ P2)P1∈F,P2∈G where A ‘∗‘ B = {(a, b) | a ∈ A, b ∈ B}.

Definition filter_prod {T U : Type} (F : set (set T))

(G : set (set U)) :=

filter_from (fun P => F P.1 /\ G P.2) (fun P => P.1 `*` P.2).

This is a simpli�cation of the �lter product from the Coquelicot library, which
is de�ned using an inductive predicate. This can easily be generalized to the n-ary
�lter product, allowing us in particular to build the neighborhood �lter of a vector
in Rn as the n-ary �lter product of the neighborhood �lters of its components.
A last construction which is of interest for analysis is the image of a �lter by a

function. Given a function f from T to U and a �lter F on T , the image of F by f ,
de�ned by f(F) =

{
B | f−1(B) ∈ F

}
, is a �lter on U .

Except for filter_from, all the �lters or constructions we introduced have or
preserve the property of being a proper �lter. Proper �lters satisfy the extra law
that they do not contain the empty set, which implies classically that any element
of a proper �lter is non-empty and that we can thus pick one element. The �lter
filter_from D B is proper if the family B does not contain the empty set, which
is the case for instance in the de�nitions of entourages, and filter_prod F G is
proper when F and G are proper �lters. Most often we are interested only in proper
�lters, hence they are sometimes simply called ��lters� (as in [GCP18]).

2The formalization of uniformType and the formal de�nition of the entourage �lter can be found
in [ACM+18a, �le hierarchy.v] and in Appendix A.2.4

47

choiceType

pointedType

filteredType U

topologicalType

uniformType

completeType

lmodType K

normedModType K

numDomainType

absRingType

completeNormedModType K

99K proved inheritance

−→ inheritance by de�nition

Translated Coquelicot structures

Mathematical Components Analysis structures

Mathematical Components structures

Fig. 2. Mathematical Components Analysis hierarchy

The main bene�t of �lters for analysis is to rephrase ε−δ phrasing into more
concise statements. For instance, f(locally(x)) ⊇ locally(y) stands for lim

x
f = y

and ((x, y) 7→ (f(x), f(y)))(entourages) ⊇ entourages states that f is uniformly
continuous. Preserving this abstraction also shortens the proofs.

2.2 About the Mathematical Components Analysis Hierarchy

Our library inherits several of its topological structures from the Coquelicot
library (see Fig. 2). We remove the structures that can be replaced with those
of the Mathematical Components library, e.g. the Ring structure from Co-
quelicot is replaced with Mathematical Components's ringType, and we
reimplement the other structures. We mentioned in Sect. 2.1 the type represent-
ing uniform spaces (uniformType). We also reimplement the structure represent-
ing normed modules (normedModType K) over a ring K equipped with an absolute
value (absRingType). In this work, the norm of x is denoted by `|[x]|. Finally, we
also adapt to our context the types representing complete spaces (completeType),
analogous to complete metric spaces but with a �lter-based notion of convergence,
and complete normed modules (completeNormedModType K). The corresponding
formal de�nitions can be found in [ACM+18a, �le hierarchy.v] together with their
main properties, and we provide a short description of them in Appendix A.
Moreover, we extend Coquelicot's hierarchy with our own structures. Having

uniform spaces at the bottom of the hierarchy as in the Coquelicot library makes
some proofs harder or even impossible. In particular, Tychono�'s Theorem has a
very concise proof in terms of �lters where the topology induced by balls in a
uniform space is not appropriate [Rou18].
Topological spaces come with their own notion of neighborhood: the set A is a

neighborhood of p if A contains an open set B which contains p. Although the

48

neighborhoods de�ned by balls (recall the de�nition of locally(x) in Sect. 2.1) are
compatible with this notion of neighborhood for the uniform topology, some sets
cannot be expressed as neighborhoods of a point in a topological space. Indeed,
�neighborhoods of +∞� (de�ned as Rbar_locally +oo in Sect. 2.3) are for instance
subsets of R and +∞ is not a point of R.
In order to reconcile the di�erent notions of neighborhoods, we put three struc-

tures below our copy of Coquelicot's hierarchy (as shown in Fig. 2). Elements of
each of these structures have an implicit coercion to their carrier and can be used
as if they were types.

�A structure for non-empty types, with a distinguished point, represented by the
pointedType structure (see [ACM+18a, �le classical_sets.v]).

�A family of types T : filteredType U, such that elements t of T represent sets
of sets on U, through the �ltered space operator locally : T -> set (set U).
This is just for sharing purposes, so we do not enforce that locally t is a �lter
yet. Moreover, having T di�erent from U makes it possible to have locally +oo

equal to Rbar_locally +oo, thanks to an instantiation of the filteredType R

structure as the canonical �lter on R associated to +oo : Rbar. We require T to
be non-empty (see [ACM+18a, �le topology.v] for details).

�Finally, a topological space structure topologicalType, for which we enforce
that the T and U in the operator locally are the same and that locally t is
exactly the proper �lter generated by the �lter base of open neighborhoods of t
(see [ACM+18a, �le topology.v] for details).

In the uniform space structure (copied from Coquelicot), we enforce that
locally t also coincides with the �lter generated by the �lter base of uniform
balls, which was not necessarily chosen the same as the basis for open sets.
These additions also give us the opportunity to provide shorter and generic no-

tations, closer to the mathematical practice, in order to improve readability, as
explained in the next section.

2.3 Notations for Limits and Convergence

In a previous work [CR17], we introduced notations in order to represent the
convergence statement lim

x
f = y as f @ x --> y in Coq. In fact, we provide

the notation f @ F for the �lter f(F) and the notation F --> G for reverse �lter
inclusion (F ⊇ G). However, in the notation f @ x --> y, usually the variables
x and y are not �lters but points in a uniform space. Hence, we also have a
mechanism based on canonical structures [MT13] to automatically infer the �lter
corresponding to the type of the point. For instance, if x is in a uniform space, then
the neighborhood �lter locally(x) is inferred, or if x is +∞, or +oo in Coq using
our notations, then it is Coquelicot's �lter of �neighborhoods of +∞� [BLM15]

Rbar_locally +oo = {A | ∃M.]M,+∞[⊆ A} .

In the particular case of functions, dedicated canonical structures are de�ned to
match their source type. If it is nat, then the function is a sequence, hence we
infer the �lter u @ eventually, where eventually is Coquelicot's equivalent of
Rbar_locally +oo for sets of natural numbers, in order to be able to write u --> y

49

for limu = y. If the source type is a function type, then we recognize in particular
the case where x is a function of type (T -> Prop) -> Prop, hence a set of sets.
The inferred �lter is then x itself.
For pointed types (and hence every structure from our hierarchy), using our clas-

sical axioms from Sect. 5, we can de�ne an Hilbert's epsilon function we call get.
It takes a predicate P and outputs a point which satis�es P if there is one (and
outputs a default point otherwise). This function makes it possible to de�ne func-
tions computing the limit of a function (see lim_in below), the generic mklittleo
operator (see Sect. 4.2), or the di�erential of a function (see Sect. 4.5).

Definition lim_in {U : Type} {T : filteredType U} :=

fun F : set (set U) => get (fun l : T => F --> l).

Here, the function lim_in takes as input a �lter and outputs a limit of F if there
is one; T de�nes canonical �lters on U. We say then that l is a limit of F if the
canonical �lter associated to l is contained in F. In particular, if the �lter F is of
the form f @ x for some function f and some point x, then lim_in F is the limit
of f at point x. We provide the notation [lim F in T] to represent the limit of
�lter F in T : filteredType U.
The lim_in function also makes it possible to express the fact that a �lter or

function converges without using an existential quanti�er: a �lter or function con-
verges if and only if it converges to its limit.

Notation "['cvg' F 'in' T]" := (F --> [lim F in T]).

Lemma cvg_ex (U : Type) (T : filteredType U) (F : set (set U)) :

[cvg F in T] <-> (exists l : T, F --> l).

We also provide the notation cvg F, which triggers the inference of T in order
to build the term [cvg F in T]. The complete formalization of limits and conver-
gence can be found in [ACM+18a, �le topology.v].

3. SMALL-SCALE FILTER ELIMINATION

Although �lters are a good way to hide �epsilon-delta� in statements, in order to
prove F P for some ultimately true proposition P, one might be tempted to replace
the �lter F by its de�nition. This may result in a breakage of abstraction and lead
to longer and less stable proof scripts (e.g. if the �lter slightly changes).
Libraries such as Coquelicot already provide tools to combine results on �lters

without doing any unfolding. We copy and extend the same tools in Sect. 3.1. We
then show how to go one step further in the transparency of �lters in Sect. 3.2.
Section 3.3 explains how to phrase Cauchy �lters so as to make their de�nition
usable more easily by our tools. Finally, Sect. 3.4 illustrates our tools in action
in a real proof and Sect. 3.5 details the di�erences between this proof and the
corresponding one in Coquelicot.

3.1 Combining Filters by Hand

The de�ning properties of �lters entail the following facts.

Lemma filter_app (T : Type) (F : set (set T)) : Filter F ->

forall H G : set T, F (fun x => H x -> G x) -> F H -> F G.

50

Lemma filterE (T : Type) (F : set (set T)) : Filter F ->

forall G : set T, (forall x, G x) -> F G.

The �rst lemma can be used to combine hypotheses of the form F Hi and a
conclusion F G into F (fun x => H1 x -> . . . -> Hn x -> G x), and the second
lemma removes the �lter so that we shall prove instead the (hopefully) simpler goal
forall x, H1 x -> . . . -> Hn x -> G x.
However this forces forward reasoning, since the user has to anticipate every

fact Hi x that will be used in the proof of G x beforehand. This means the state-
ments Hi have to be written explicitly by the user, and they often depend on the
choice of splitting of epsilons in the rest of the proof, which was also the main
source of instability of proof scripts without using �lters. This clearly appears in
the proofs of the lemmas of the double limit theorem filterlim_switch_1 and
filterlim_switch_2 in the Coquelicot library [BLM18, �le Hierarchy.v].
We now show a novel method which absolves the user from providing explicitly

the statements Hi.

3.2 The Tactics near=>, near · =>, near:, and end_near

The purpose of this section is to explain the new near tactics we provide to
perform small-scale �lter elimination.
The basic principle of �lter elimination is to make the user believe that instead of

proving F Q she should instead prove Q x directly, where x can be in an arbitrarily
precise set belonging to F. The lemma filter_near_of describes this formally3:
the in_filter record is the type of sets belonging to F, hence P represents the
arbitrarily precise set containing x.

Record in_filter T (F : set (set T)) := InFilter {

prop_in_filter_proj : T -> Prop;

prop_in_filterP_proj : F prop_in_filter_proj

}.

Lemma filter_near_of T F (P : in_filter T F) (Q : set T) :

Filter F -> (forall x, prop_in_filter_proj P x -> Q x) -> F Q.

From now on, we sometimes use the notation \forall x \near F, G x, which
is a notation for F (fun x => G x). This should be read �for all x which is
near F, G x holds�, and we will use this phrasing instead of the too speci�c �ulti-
mately true� or �eventually true�. We also de�ne the notation x \is_near F for
prop_in_filter_proj P x for some P : in_filter T F. This notation deliber-
ately hides P since it is not meant to be given by the user but rather instantiated
trough the use of the near tactics.

3.2.1 Using near=>, near: and end_near

(1) The tactic near=> x performs an �introduction�.
On a goal of the form \forall x \near F, G x, it puts into the local context
a variable x and an hypothesis x \is_near F and yields the goal G x. The

3We have slightly simpli�ed the presentation; the actual statement does not use directly the
projection prop_in_filter_proj [ACM+18a].

51

latter hypothesis hides an existential variable ?H for the neighborhood to which
x belongs, so that the membership proof F ?H is actually delayed. This is in
fact a simple application of Lemma filter_near_of.

Tactic Notation "near=>" ident(x) :=

apply: filter_near_of => x ?.

We call the x which is now in the local context a near-variable. A near-variable
could be de�ned as variables x which come with an hypothesis x \is_near F,
hiding an existential variable, in the local context.

(2) The tactic near: x �discharges� the near-variable x.
On a goal of the form Hi x such that the hypothesis x \is_near F is in the
context, it yields the goal \forall x \near F, Hi x. This partially instanti-
ates the existential variable ?H associated with the hypothesis x \is_near F

as the intersection between Hi and a fresh existential variable ?H'. The user is
invited to prove the goal right away.
If Hi had already been added to the set hidden in the hypothesis x \is_near F

through a previous use of near: x, then it immediately closes the goal without
modifying ?H.

(3) Once the main goal has been proved, there remain existential variables that
have not been instantiated. These correspond to the ?H' in the last calls of the
near: x tactic. They can be instantiated with the total set, since it belongs to
any �lter. This is the purpose of the end_near tactic.

3.2.2 Using near F => x, near: and end_near. Instead of acting on the goal,
the tactic near F => x introduces a variable x along with the x \is_near F hy-
pothesis, once again hiding an existential variable. After using near F => x, one
may use near: and end_near in exactly the same ways as before. The tactic
near F => x requires the �lter F to be proper, i.e. no set H in F is empty.

3.2.3 Combining all Near Tactics. The tactics near=> x and near F => y may
be combined any number of times, and in any order. Near-variables can be dis-
charged by using near: z provided that the statement contains only variables in-
troduced before z was. This limitation, guaranteed by Coq type checking, is legit-
imate as we must not be able to introduce circular dependencies in the existential
variables.

For the detailed implementation of the near tactics, we refer the reader to the
formalization [ACM+18a, �le topology.v].

3.3 Rephrasing Concepts

Our methodology requires that some lemmas are phrased in a particular way.
For example there are several equivalent ways to de�ne a Cauchy �lter. The most
(ε−δ)-ish way is

Definition cauchy_ex {T : uniformType} (F : set (set T)) :=

forall eps : R, 0 < eps -> exists x, F (ball x eps).

However it is easier to use the following equivalent de�nition:

Definition cauchy {T : uniformType} (F : set (set T)) :=

forall e, e > 0 -> \forall x & y \near F, ball x e y.

52

Indeed, the existential quanti�cation is then encapsulated in the \near F nota-
tion and can thus be treated in a systematic way in our proofs. This rephrasing
could be disturbing for users that might not immediately see these are the same
concepts. Hopefully they can be convinced by simple equivalence lemmas.

Lemma cauchyP (T : uniformType) (F : set (set T)) :

ProperFilter F -> cauchy F <-> cauchy_ex F.

Although this particular equivalence is only true for proper �lters, it is su�cient
since in practice we manipulate only �lters that are proper.
Note that the point of view of uniformType in terms of entourages leads to an

even more compact equivalent de�nition, which we use as an intermediate step in
the proof of cauchyP.

Lemma cauchy_entouragesP (T : uniformType) (F : set (set T)) :

Filter F -> cauchy F <-> (F, F) --> entourages.

Here, the �lter associated to (F, F) in the · --> · notation is inferred as the
product �lter filter_prod F F thanks to the canonical structures mentioned in
Sect. 2.3.
In the same vein, our de�nition of big-O in Sect. 4.1, which is equivalent to stan-

dard ones, encapsulates both existential quanti�ers from the mathematical de�ni-
tion in the \forall \near notation to work better with the near tactics.

3.4 Use-Case: a Short Completeness Proof

We detail a proof that the type of functions from an arbitrary (choice) type to
a complete type is again complete. This proof is interesting for several reasons.
First, it illustrates our main technical contributions: it uses all of our tactics and
demonstrates our use of �lters, in particular, this proof uses two �lters on two
di�erent types. Second, it shortens the original proof in Coquelicot [BLM18,
Lemma complete_cauchy_fct, �le Hierarchy.v] from about 40 lines to 7 lines
(see Sect. 3.5 for a brief explanation of the di�erences between the two proofs), by
removing in particular the three explicit witnesses. Finally, it shows how our work
leads to formal proofs that look like informal ones: arguments can be stated without
being cluttered by technical constructions of witnesses (see line 5), the latter being
delayed and constructed by resorting to lemma applications (see lines 5�6), which
makes for shorter and more stable proof scripts.
The proof script we explain below is part of the formalization accompanying this

article [ACM+18a, �le hierarchy.v].

Lemma fun_complete (T : choiceType) (U : completeType)

(F : set (set (T -> U))) {FF : ProperFilter F} : cauchy F -> cvg F.

Proof.

Before all, observe that the implicit type of the Cauchy �lter is not T -> U as
it may appear at �rst sight; it is actually inferred to be fct_uniformType T U,
the type of functional metric spaces, which is a uniformType, as required by the
de�nition of Cauchy �lter (see Sect. 3.3). The mechanism at work here is (again)
the one of canonical structures [MT13].

53

We start by proving that for all t of type T, the �lter {{f(t) | f ∈ A} |A ∈ F} is
Cauchy in U. This �lter can be expressed succinctly as soon as one observes that it
is the image of the �lter F by the function fun f => f t. More precisely, it can be
written ((fun f => f t) @ F) using the in�x notation @ that denotes the image
of a �lter (see Fig. 1). Line 1 below states that this �lter is Cauchy4; line 2 proves
this fact. The proof is very simple since it is a direct consequence of cauchy F (the
local hypothesis labeled Fc introduced at the beginning of line 1).

1 move=> Fc; have /(_ _)/complete_cauchy Ft_cvg : cauchy (@^~_ @ F).

2 by move=> t e ?; rewrite near_simpl; apply: filterS (Fc _ _).

At this stage, we have to prove cvg F, knowing that cauchy F holds as well
as forall t : T, cvg ((fun f => f t) @ F). This latter hypothesis is a direct
consequence of the subgoal we explained just above. It results from the application
performed at line 1 of Lemma complete_cauchy to the following subgoal, proved by
line 2, forall t : T, cauchy ((fun f => f t) @ F). Under these hypotheses,
the function fun t => lim ((fun f => f t) @ F) is the pointwise limit of the
�lter F. We now prove that this limit is uniform.

3 apply/cvg_ex; exists (fun t => lim (@^~t @ F)).

Under the same hypotheses as before, we now have to prove:

F --> (fun t : T => lim ((fun f => f t) @ F)).

Since the right-hand side is a point of T -> U, it is interpreted as the �lter of
neighborhoods of this point. So it su�ces to prove, for all e such that e > 0, that
we have

\forall f \near F, ball (fun t : T => lim ((fun f => f t) @ F)) e f.

This goal transformation is achieved at the beginning of line 4 by the application of
the Lemma flim_ballPpos. After application of this lemma, we are in a position
to use the near tactics as we will explain shortly.

4 apply/flim_ballPpos => e; near=> f => t; near F => g => /=.

The �rst near tactic used at line 4 has the following consequence: we are asked
to prove for all f which are near F and for all t that

ball (lim ((fun f => f t) @ F)) e (f t)

holds. The proof goes by introducing a g, which is near F as well; this is also
achieved at line 4 by the second near tactic.
We then split the ball around (g t) (using Lemma ball_splitl, see line 5) and

are left to prove two goals:

(1) ball (lim ((fun f => f t) @ F)) (e / 2) (g t), and

(2) ball (f t) (e / 2) (g t)

4We display the actual proof script where fun f => f t is abbreviated @^~ t using Mathemati-

cal Components notations.

54

which will both be true when g is near F, so that we will use the near: g tactic.
We claim that this reasoning is an informal one in the sense that this proof step
does not need to be interleaved with technical proofs that can be handled later as
mere consequences of near facts.
The �rst goal can be proved by Ft_cvg (the hypothesis obtained from line 1).

The terseness of SSReflect tactics actually allows us to prove it on the same line
of proof script as the application of Lemma ball_splitl:

5 apply: (@ball_splitl _ (g t)); first by near: g; exact/Ft_cvg/

locally_ball.

The second goal can be proved for all values of t, when f is near F, so that we
�rst generalize t, using move: (t), and then discharge g and f using near: twice:

6 by move: (t); near: g; near: f; apply: nearP_dep; apply: filterS (Fc

_ _).

After calling near: f, we have to prove

\forall f \near F, \forall g \near F,

forall t, ball (f t) (e / 2) (g t).

This is achieved by using Lemma nearP_dep (see line 6). We can conclude because
the �lter F is Cauchy and e / 2 is obviously positive (this is automatically proved
by using another set of canonical structures).
The last line of the proof script is for proving automatically the remaining trivial

existentials:

7 Grab Existential Variables. all: end_near. Qed.

3.5 Di�erences with the Proof in Coquelicot

Several di�erences occur between both the statements and the proofs of Lemma
fun_complete (Sect. 3.4) and Lemma complete_cauchy_fct (Coquelicot li-
brary [BLM18, �le Hierarchy.v]). Let us clarify them.
First, let us compare the statements. Both Lemma fun_complete and Lemma

complete_cauchy_fct state that for any proper �lter on the function space T -> U,
if it is Cauchy, then it converges, but both the de�nitions of Cauchy �lters and �lter
convergence di�er. For Cauchy �lters, we use the cauchy predicate from Sect. 3.3
while cauchy_ex is used in Coquelicot. This forces the authors of Coquelicot
to use in their proof an additional lemma [BLM18, Lemma cauchy_distance, �le
Hierarchy.v], which states the equivalence between cauchy_ex and a predicate
which is very close to cauchy once the \forall \near notation is unfolded.
For �lter convergence, the authors of Coquelicot use an epsilon phrasing which

amounts to:

\forall eps, 0 < eps -> F (ball (lim F) eps).

We choose instead the cvg F notation (recall Sect. 2.3), which is equivalent to
F --> lim F, i.e. F contains the neighborhood �lter of lim F. In our de�ni-
tion, balls are thus abstracted through the use of the topology. However, our

55

proof of Lemma fun_complete still resorts to balls so we have to use an additional
lemma [ACM+18a, Lemma flim_ballPpos, �le hierarchy.v] in order to get back
the epsilon phrasing.
These two di�erences taken into account, the two proofs follow the same reason-

ing. Apart from the impact of the near tactics, the remaining di�erences in the
proofs are due to naming conventions and to slight reformulation of some lemmas.

4. MECHANIZATION OF BACHMANN-LANDAU NOTATIONS

When Donald Knuth addresses the editor of the Notices of the American Mathe-
matical Society about teaching calculus, he insists on using the big-O notation such
as it blends smoothly into equational reasoning [Knu98]. �[I]t signi�cantly simpli�es
calculations because it allows us to be sloppy but in a satisfactorily controlled way.�
He goes as far as �dream[ing] of writing a calculus text entitled O Calculus�.
This section synthesizes the key ideas that mechanize Knuth's dream in a prov-

ably correct fashion. We explain the basic intent of our mechanization in Sect. 4.1,
show how we recover an equational view with little-o and big-O notations in
Sect. 4.2, describe a few aspects of the equational theory in Sect. 4.3, and pro-
vide concrete evidence of its usefulness in Sections 4.4�4.6.

4.1 The Notations f = o(e) and f = O(e)

The little-o and big-O notations are traditionally de�ned by

f = o0(e) or f(x) = o
x→0

(e(x)) ⇔ ∀ε>0.∃δ>0.∀x. |x|<δ ⇒ |f(x)| 6 ε|e(x)|,
f = O0(e) or f(x) = O

x→0
(e(x)) ⇔ ∃k>0.∃δ>0.∀x. |x|<δ ⇒ |f(x)| 6 k|e(x)|.

For the sake of readability we gave the de�nitions of these notions at a neigh-
borhood of 0, but they are generalized to any �lter in our library [ACM+18a, �le
landau.v].
The �equality� in the notation f = o(e) is a well-known abuse of notation. Indeed

it is neither symmetric, since one cannot write o(e) = f , nor transitive, since
f = o(e) and g = o(e) do not imply f = g and not even f ∼ g (cf. Sect. 4.4).
In fact, f = o(e) should be read as �f is a little-o of e�. It is not rare to see

this reading enforced by the notation �f ∈ o(e)� in undergraduate-level teaching,
allegedly to prevent students' confusion (see for example in [AF88], a textbook
from the eighties still popular in France). It is therefore no surprise to �nd o0(e)
viewed as a set of functions, or equivalently a predicate on functions, even in recent
formalizations [GCP18].
Our formalization builds on the set-theoretic notation using a type-theoretic vari-

ant. Indeed, we provide both a predicate littleo_def for functions that are little-o
of other functions at some �lter, and a sigma-type littleo_type. Similarly for big-
O, we provide a predicate bigO_def and a type bigO_type. The formal de�nitions
of the predicates advantageously use the \near notation introduced in Sect. 3.2:

Context {T : Type} {K : absRingType} {V W : normedModType K}.

Let littleo_def (F : set (set T)) (f : T -> V) (e : T -> W) :=

forall eps : R, 0 < eps ->

\forall x \near F, `|[f x]| <= eps * `|[e x]|.

56

Let bigO_def (F : set (set T)) (f : T -> V) (e : T -> W) :=

\forall k \near +oo, \forall x \near F, `|[f x]| <= k * `|[e x]|.

Regarding notational conventions in the remaining of this article, note that, like
in the code snippet just above, T is a type, K is a ring equipped with an absolute
value, and V and W are normed modules over K; they all are implicit arguments of
forthcoming de�nitions.
The sigma-types littleo_type and bigO_type directly follow from the corre-

sponding ternary predicates:

Structure littleo_type (F : set (set T)) (e : T -> W) :=

Littleo {

littleo_fun :> T -> V;

littleoP : littleo_def F littleo_fun e

}.

Structure bigO_type (F : set (set T)) (e : T -> W) :=

BigO {

bigO_fun :> T -> V;

bigOP : bigO_def F bigO_fun e

}.

For the sake of readability, we slightly simpli�ed the de�nitions compared to the
source code: we removed Prop to bool coercions and the littleoP and bigOP

�elds are lemmas deduced from unnamed �elds in the actual code. The unaltered
de�nitions can be found online [ACM+18a, �le landau.v].
Let us comment more speci�cally on the structure littleo_type. It packs a

function, namely the littleo_fun projection, with a proof that it is a little-o of e,
providing us with the type of functions that are a little-o of another function. In
particular, we can inhabit this type with the null function (and the trivial proof that
it is a little-o). Let us call littleo0 this record with the null function. The type
littleo_type F e is furthermore equipped with the notation {o_F e} to improve
reading.
So littleo_type and bigO_type provides a type-theoretic variant of the set-

theoretic notation for little-o and big-O, but it can be argued that such a set-
theoretic notation is misplaced because it precludes the equational viewpoint that
Knuth advocates [Knu98], along with formal-proof practitioners, and even anachro-
nistic now that today's students use symbolic algebra systems like Maple and Wol-
framAlpha where the big-O notation appears in power series calculations.
In this article, we make a strong case for the equational viewpoint, and we explain

in the next section how to recover it.

4.2 The Notations f = g + o(e) and f = g +O(e)

Indeed it is also in the folklore to write f = g + o(e) to mean f − g = o(e) in
the previous acceptation. Since expressions involving the little-o notation are to be
considered as classes of functions, the formula f = g + o(e) suggests a reading in
terms of a congruence relation. It might therefore seem like a good idea to formally
de�ne the corresponding equality and let it be denoted by a ternary notation.
However, doing so carelessly might preclude routine mathematical practice, �rst

57

because the bound e changes a lot from one equality to another, for example, if
f(x) = g(x) + o

x→0
(x) then xf(x) = xg(x) + o

x→0

(
x2

)
. Second, mathematicians

add little-o and big-O from various scales as in: �if f(x) = g(x) + o
x→0

(x) and

g(x) = O
x→0

(
x2

)
then f(x) = o

x→0
(x)�.

To re�ect this mathematical practice, we decided to stress that f = g + o(e)
means �f = g + h where h is a little-o of e�, which is de�ned formally as follows.

De�nition 4.2.1. We de�ne o(e)[h] to be h if h is a little-o of e, and 0 otherwise.

In particular, the statement f = g + o(e)[h] means f = g + h if h is little-o of e,
and f = g otherwise.
In Coq, to de�ne o(e)[h], we provide a function mklittleo5 that builds a little-o

from an arbitrary function. Given a function h, mklittleo tries to coerce it to
the subtype of little-o's and, when it fails, it returns the null little-o (using the
function littleo0 mentioned in Sect. 4.1). This mechanism of partial projection
into a subtype is provided by the generic operator insubd from theMathematical
Components library:

Definition mklittleo (F : filter_on T) (h : T -> V) (e : T -> W) :=

littleo_fun (insubd (littleo0 F e) h).

Notation "[o_ x e 'of' h]" := (mklittleo x h e)

(at level 0, x, e at level 0, only parsing).

In order to avoid stating witnesses explicitly, we notice that if f = g + h, then
h = f − g hence h is a little-o of e if and only if f − g is. This leads us to de�ne
the sought ternary notation to be:

Notation "f = g '+o_' x e" := (f = g + [o_x e of f - g]).

The ternary notation f = g +o_x e expands to f = g + [o_x e of f - g]. We

then deliberately hide the h in the printing of the notation so that [o_x e of h]

prints back 'o_x e.

However, if we try to prove f = g +o_x e in a purely arithmetical way, we might
rewrite with equations for f and g and �nally get a goal of the form o(e) = o(e). In
a paper-and-pencil proof, this is considered as trivial, but in a formal proof, both
little-o hide functions h and h′, and the statement to prove is in fact the equality
o(e)[h] = o(e)[h′]. In this situation there is very little chance that this uni�cation
succeeds, so our methodology consists in replacing h′ by an existential variable ?h′

as soon as possible. This is made possible because of the following observation:

f = g + o (e) [f − g]⇔ ∃h. f = g + o (e) [h] , (1)

which allows to replace a goal f = g +o_x e by a goal f = g + [o_x e of ?h]

(printed f = g + 'a_o_x e) where ?h is an existential variable.

4.3 Equational Theory

Our main concern is to preserve the bene�ts of the equational view of little-o and
big-O. That means developing a small theory containing the main �equations� one

5Here again the de�nition is simpli�ed by removing Prop to bool coercions and phantom types.

58

may need in order to combine them easily. Once su�ciently many equations are
proved, that allows the user to prove facts about little-o and big-O using informal
reasoning, without having to go back to the de�nition of little-o and big-O and
to do explicit local reasoning, except in particular cases where the theory lacks an
equation (see Sect. 4.4 for examples where the �lter characterization of little-o is
completely abstracted from the proof).
We do not claim to have reached such a complete set of equations, but we proved

a few equations that seemed important to us. Let us give examples. First, we have
arithmetic rules for little-o and big-O. For instance, little-o absorbs addition and
the product of a O(h1) and a O(h2) is a O(h1 · h2).

Context {F : filter_on T}.

Lemma addo (f g : T -> V) (e : T -> W) :

[o_F e of f] + [o_F e of g] =o_F e.

Lemma mulO (h1 h2 f g : T -> R) :

[O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).

We also have a few rules combining little-o and big-O. For example, a o(e) is
also a O(e) and a little-o of a O(g) is a o(g).

Lemma littleo_eqO (e : T -> W) (f : {o_F e}) :

(f : _ -> _) =O_F e.

Lemma littleo_bigO_eqo (g : T -> W) (f : T -> V) (h : T -> X) :

f =O_F g -> [o_F f of h] =o_F g.

Of course, in order to prove this set of equations, local reasoning is necessary at
some point. This is where the near tactics from Sect. 3.2 come into use.
For instance, let us have a look at the proof of Lemma littleo_bigO_eqo6. The

function f is a O(g) and the function [o_F f of h] is a o(f), either equal to h if
it is a o(f), or to the null function (recall Sect. 4.2). Since the goal is to prove that
the function [o_F f of h] is a o(g), the �rst step is to go back to the de�nition
of little-o and introduce the universally quanti�ed �epsilon�. This is the application
of lemma eqoP at line 1 that recovers the de�nition littleo seen in Sect. 4.1.

1 move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO _ g.

In line 1, we also replaced f in [o_F f of h] with [O_F g of f]. We also
abstract the latter function using a fresh function k and, since it was a big-O of g,
we get as an hypothesis a positive constant c such that

\forall x \near F, `|[k x]| <= c * `|[g x]|.

At this point the goal to prove is

\forall x \near F, `|[k x]| <= c * `|[g x]| ->

\forall x \near F, `|['o_(x \near F) (k x)]| <= eps * `|[g x]|.

6The proof script can be found in [ACM+18a, �le landau.v].

59

We use filter_app to combine both statement so that we should now prove

\forall x \near F, `|[k x]| <= c * `|[g x]| ->

`|['o_(x \near F) (k x)]| <= eps * `|[g x]|.

Now we give ourselves an x which is near F thanks to the near=> x tactic.

2 apply: filter_app; near=> x.

We have to prove that

`|[k x]| <= c * `|[g x]| ->

`|['o_(x \near F) (k x)]| <= eps * `|[g x]|

by manipulating the inequalities until we reach the goal

`|['o_(x \near F) (k x)]| <= eps / c * `|[k x]|

as the result of multiple rewritings and transitivity (see line 3).

3 rewrite -!ler_pdivr_mull //; apply: ler_trans; rewrite

ler_pdivr_mull // mulrA.

The latter goal should be true for x which is near F since 'o_(x \near F) (k x)

is a little-o of k and eps / c is positive.
To �nish the proof, we can now call the near: x tactic. At this point, the

remaining goal is

\forall x \near F, `|['o_(x \near F) (k x)]| <= eps / c * `|[k x]|

which can be proved by using the �lter characterization of little-o (at line 4).

4 by near: x; apply: littleoP.

The last line of the proof script calls the end_near tactic to dispose of the re-
maining existentials:

5 Grab Existential Variables. all: end_near. Qed.

4.4 Application: Asymptotic Equivalence

Two functions f(x) and g(x) are equivalent as x goes to a (notation: f ∼a g)
when f = g + oa(g). Thanks to the ideas explained in Sections 4.1 and 4.2 and to
the equations already proved in Sect. 4.3, the fact that ∼ is an equivalence relation
can be established by short proof scripts. For the sake of illustration, let us explain
how we show that ∼ is symmetric and transitive (see [ACM+18a, �le landau.v]
for details).
The symmetry of ∼ is mechanized as follows (f ~_F g is the Coq notation for

f ∼F g):

60

Context {F : filter_on T}.

Lemma equiv_sym (f g : T -> V) : f ~_F g -> g ~_F f.

Proof.

move=> fg; have /(canLR (addrK _))<- := fg.

by apply: eqaddoE; rewrite oppo (equivoRL _ fg).

Qed.

The �rst line of the proof script is made of standard tactics that change the
goal to f − o(g) ∼ f . Lemma eqaddoE implements the idea of (1): it introduces
an existential variable ?h such that the goal becomes f − o(g) = f + o(f)[?h].
Rewriting with Lemma oppo turns f − o(g) into f + o(g) and Lemma equivoRL

turns o(g) into o(f) (it uses the hypothesis f ∼ g). The right- and left-hand sides
can now be uni�ed and the proof is completed.
The transitivity of ∼ is mechanized as follows:

Lemma equiv_trans (f g h : T -> V) : f ~_F g -> g ~_F h -> f ~_F h.

Proof.

by move=> -> ->; apply: eqaddoE; rewrite eqoaddo -addrA addo.

Qed.

After the application of Lemma eqaddoE, the goal is

h+ o (h) + o
(
h+ o (h)

)
∼ h+ o (h) [?e],

where ?e is an existential variable. Lemma eqoaddo transforms o(h + o(h)) into
o(h) and Lemma addo transforms o(h) + o(h) into o(h). After rewriting, the goal
is h+ o(h) ∼ h+ o(h)[?e], so that uni�cation succeeds and completes the proof.

4.5 Application: Di�erential of a Function

We use the little-o notations, in combination with the get function from Sect. 2.3,
in order to de�ne the di�erential of a function:

Definition diff (F : filter_on V) (f : V -> W) :=

(get (fun (df : {linear V -> W}) => forall x,

f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).

where the x of (x \near F) is used to �nd the function hidden by the little-o,
and, let us recall from Sect. 4.1, where V and W are normed modules over a ring K

equipped with an absolute value (see [ACM+18a, �le derive.v] for details).
We remarked in previous work [CR17, Rou18] that having such a function for the

di�erential and using additional hypotheses that state which functions are di�er-
entiable makes proofs more natural and easier than using only a predicate stating
that an expression is the di�erential of a function.

4.6 Application: Uniform Big-O
Boldo et al. designed a notion of uniform big-O in their work on the numerical

resolution of the wave equation [BCF+13]. They are interested in relations of the
form

f (x,∆) = O
∆→0

(g (∆)) ,

61

but with a uniform de�nition with respect to x, i.e. with the following de�nition:

∃C > 0. ∃α > 0. ∀x. ∀∆. ‖∆‖ < α⇒ ‖f (x,∆)‖ < ‖g (∆)‖ .

We can formalize this uniform big-O as

(fun p => f p) =O_F (fun p => g p.2)

where p represents the pair (x,∆) and p.2 is thus ∆ (recall Fig. 1), and with an
appropriate choice for the �lter F.
The �lter F must be a �lter on a Cartesian product and can be de�ned using the

�lter product function filter_prod (see Sect. 2.1). Its �rst argument is the �lter
corresponding to x. Since there is no constraint on x, we can choose the trivial
�lter containing only the total set. The second argument, corresponding to ∆, is
the neighborhood �lter of 0 (i.e. locally 0).
In fact, in their source code, Boldo et al. force ∆ to be within a particular domain

and use sigma types instead of the existential quanti�er. We can still provide an
equivalent de�nition thanks to a �restriction� operator on �lters and prove that it
is indeed equivalent to their de�nition thanks to the axioms from Sect. 5. The
interested reader may refer to the source code for more details [ACM+18a, �le
misc/uniform_bigO.v].

5. COQ AXIOMS TO MAKE CLASSICAL ANALYSIS PRACTICAL

The formal tools we have explained so far have been developed with classical
analysis in mind. However, the native logic of Coq (the Calculus of Inductive
Constructions) is constructive. Fortunately, there exist several axioms that can be
safely added. In this section, we explained the axioms on which our development
relies. In short, they bring to the logic of Coq: extensionality, the law of excluded
middle, and the axiom of choice. These are arguably much-needed axioms for
classical analysis and it is therefore no wonder that they are important to make
the Mathematical Components Analysis library practical. In the following,
we explain how they are used in the tools we described in this article. For the sake
of presentation, we divide our four axioms into two categories: the extensionality

axioms and the classical axioms.

5.1 Extensionality Axioms

The �rst two axioms on which our development relies are �extensionality� axioms:

propext: forall (P Q : Prop), (P <-> Q) -> (P = Q).

funext: forall {T U : Type} (f g : T -> U),

(forall x, f x = g x) -> f = g.

The �rst one is sometimes called �propositional extensionality�: it expresses that
two logically equivalent propositions are intentionally equal. The second one, called
�functional extensionality�, expresses that two functions that are pointwise (or ex-
tensionally) equal are (intentionally) equal. These �extensionality� axioms are justi-
�ed by multiple models including the simplicial model of type theory. In particular,
they are a consequence of the univalence axiom [Uni13] (up to replacing Prop in our
statements by hProp and equality by relevant identity). We justi�ed them using the

62

axioms propositional_extensionality and functional_extensionality_dep

from the Coq standard library.
Theoretically, many theorems proved using these axioms might in practice be

established without them, at the cost of changing the notion of equality. Indeed,
we could replace many uses of the generic (Leibniz) Coq equality with a weaker
form of equality such as pointwise equality for functions or equivalence for propo-
sitions. However, this would make proofs considerably longer, for no particular
bene�ts. Moreover, the main proof assistants where classical logic is primitive
(i.e. Isabelle/HOL, HOL Light, HOL4, Mizar) also have a primitive equality
which is extensional for functions and propositions, and so does Lean.
These extensionality axioms are particularly useful in stating and reasoning about

equality on sets and equality on �lters (which ultimately boils down to the former).
Indeed, since we represent sets on a type T as functions of type T -> Prop the
combination of the two axioms helps state and reason about equality of functions
whose target is a proposition. This is so pervasive that we even have the following
lemma (as well as several variants):

Lemma predeqE {T} (P Q : set T) : (P = Q) = (forall x, P x <-> Q x).

5.2 Classical Axioms

The other two axioms on which our development relies are �classical� axioms:

pselect: forall (P : Prop), {P} + {~P}.

gen_choiceMixin: forall {T : Type}, Choice.mixin_of T.

The axiom pselect is a strong version of the law of excluded middle, where the
result can be used to give a value in Type. The axiom gen_choiceMixin states the
existence of a choice function on any type, which we do not detail here as it is speci�c
to the Mathematical Components library (see [MT16, Sect. 7.3]). These two
axioms are justi�ed by the axiom constructive_indefinite_description from
the Coq standard library, which is one formulation of Hilbert's epsilon, and by the
axiom of propositional extensionality from Sect. 5.1. This is best illustrated by the
proof of the axiom pselect. The latter is established in part as a consequence of
the standard law of excluded middle (i.e. in Prop), which we prove as Diaconescu's
theorem [Dia75] using both inde�nite description and propositional extensionality.
These classical axioms are used in particular in our implementation of Bachmann-

Landau notations. The latter indeed relies on an operation that takes a function,
�nds out whether it is a little-o and outputs the proof when it is the case, and other-
wise returns the null little-o. We do not know if there is a constructive alternative,
like taking the minimum of two functions, in order to force it to be a little-o.
In contrast, it is likely that the near tactics still work without classical axioms,

since their ancestor bigenough did work to prove facts about Cauchy reals [Coh12b].

6. RELATED WORK

Our work takes its starting point in the re-implementation of the Coquelicot
library [BLM15] to make it fully compatible with the Mathematical Compo-
nents library [GAA+13], in order to be able to combine algebra and analysis in

63

the same framework. We alter Coquelicot's hierarchy by adding more struc-
tures (see Fig. 2), and with notations that make formal statements closer to the
mathematical ones (see Fig. 1 and Sect. 2.3). We reformulate many de�nitions and
theorems involving asymptotic reasoning to take advantage of the near tactics,
which make proofs shorter. On the other hand, several parts of the Coquelicot
library have not been adapted to our new context yet (mostly, sequences, integrals,
and series).
The Coquelicot library also contains ternary predicates de�ning little-o and

asymptotic equivalence of functions. Our de�nitions are basically the same (in
particular the ternary predicate littleo) but their theory is not quite developed
in Coquelicot. We provide a set of notations (see Fig. 3) and a more substantial
equational theory on top of our de�nitions, which make them easier to manipulate.
We also have notations and a theory for big-O.
The Coquelicot library provides total functions to compute the limit and the

derivative of a function. They are however restricted to functions from R to R. We
de�ne a limit function for any function whose domain and codomain are equipped
with canonical �lters and a di�erential function for any function whose domain
and codomain are normed modules. The crucial di�erence is that we include the
existence of choice functions in our hierarchy at the cost of additional axioms,
which give us these functions for free, while in the Coquelicot library they are
constructed from the limited principle of omniscience.
Avigad and Donnelly's formalization in Isabelle/HOL [AD04] views big-O as

sets. They describe inclusion and equational reasoning on big-O at the set level,
and they manage to prove the prime number theorem using it. Thirteen years later,
Eberl improves and extends their work by providing, in addition to big-O, the little-
o, Ω, ω, and Θ notations, in order to prove the complexity of �divide-and-conquer�
algorithms [Ebe17]. Coupled with Isabelle/HOL's �heavy automation�, his Lan-
dau symbols halve the size of his proofs [Ebe17, Sect. 3.2.2]. His Landau symbols
are de�ned using the eventually construct of the standard library that applies a
predicate to a �lter. Formal proofs therefore enjoy the eventually_elim tactic that
automates the application of �lter-related lemmas together, and is often combined
with other lemma collections (such as field_simps). The tactic eventually_elim
is a simpler form of the near tactics, well adapted to Isabelle/HOL proof style.
Indeed, when using eventually_elim one lists upfront a list of hypothesis that will
be used by the automated proof search. Using near, these sets are inferred at the
appropriate places while writing the proofs in an imperative style.
Guéneau et al. [GCP18] have developed in Coq a library to formalize the time-

complexity of OCaml programs. To represent asymptotic bounds, they provide
a formalization of the big-O notation. Similarly to us, their de�nition relies on
�lters, but only on �nite �lter products of the eventually �lter (see Sect. 2.3) and
its equivalent in Z. Furthermore, they de�ne a type for types equipped with one

�lter, while we make it possible to have a di�erent �lter for each element of the

type.
However, in the face of the di�culties encountered to reproduce the (apparently

sloppy) manipulation of the big-O notation, they give up on producing proofs �as
simple [...] as their paper counterparts�, choose to formalize the big-O notation
as a dominance relation, and deprive themselves of Coq equational reasoning ca-

64

pabilities. Their library would require extension with the little-o notation and to
arbitrary �lters for it to �have other applications in mathematics�. In comparison,
our work already provides both notations, retains equational reasoning, and already
�ts together with a hierarchy of mathematical structures [ACM+18a] designed on
the model of Mathematical Components [GGMR09, MT16].
Their proofs also use delayed production of witnesses of existential quanti�ers in

the particular case of the computation of cost functions. They use Procrastina-
tion [Gué18], a small library of tactics similar to our near tactics. Both our work
and the Procrastination library are a generalization of the bigenough library
from previous work [Coh12b], which only dealt with statements that are eventually
true in N. The main di�erence between Procrastination and the near tactics is
the following. To prove a given goal using Procrastination, one can introduce
variables and accumulate properties about them. Once the goal is proved, the user
is asked to provide an actual value for these variables which satis�es every accu-
mulated property. Our work is more centered on �lters: we do not have to provide
a witness of the satis�ability of a predicate, but only to prove that the accumu-
lated predicates belong to a given �lter. The implementation of Procrastination
also have more tactics, which are more complex, while we try to minimize them,
following the Small-Scale Re�ection strategy [MT16].
A particular formalization of big-O to be mentioned is the one by Boldo et

al. [BCF+13]. Their uniform big-O can be expressed with our de�nition through
the choice of the appropriate �lter, as described in Sect. 4.6.
Finally, �lters à la Hölzl, Immler and Hu�man [HIH13], are also used in an

ongoing formalization of classical analysis in Lean [Lea17].

7. CONCLUSION

In this work, we provide a set of techniques and notations (notations are sum-
marized in Fig. 3) in order to make asymptotic reasoning as smooth as possible in
Coq. We integrate a mechanism for �lter inference into a hierarchy of mathemati-
cal structures [ACM+18a], together with notations and de�nitions that make �lter
manipulation easier.
We de�ne tactics that make it possible to delay the instantiation of existential

witnesses in order to allow for �rigorous asymptotic hand-waving�. These tactics are
more generally designed to do �lter elimination while avoiding forward reasoning.
We then take advantage of our new framework to design equational Bachmann-

Landau notations and to develop a small theory of little-o and big-O that removes
all explicit local reasoning from some proofs.

Future Work. We plan to build a full classical analysis library, with convergence
criteria for in�nite sums or integrals based on asymptotic comparison, and also
in�nite sums and integrals of little-o, big-O and equivalences. We plan in particular
to experiment with the same kind of construction as the mklittleo function for
upper bounds, limits, derivatives and di�erentials.
Our strategy in this work is to provide a minimalistic set of tactics that makes

it easier to build a small library in the tradition of the Mathematical Compo-
nents library [G+15]: our tactics are �small-scale� [MT16] (they perform elemen-
tary steps, hence proofs are more stable) and we focus on proving a collection of

65

Notations used in Sections 3 and 4 (see [ACM+18a, �le topology.v] for details):

\forall x \near F, G x �for all x near F, G x holds�, i.e. F G where
F is a �lter over T and G : T -> Prop (a set over T)

\forall x & y \near F, H x y (filter_prod F F)(fun x => H x.1 x.2) where
F is a �lter over T and H : T -> T -> Prop

x \is_near F x is in a set that belongs to F

little-o notations used in Sect. 4 (see [ACM+18a, �le landau.v] for details and big-O notations):

{o_F e} the type littleo_type F e of little-o's of e
[o_F e of f] a function with a canonical structure of little-o of e,

f if it is indeed a little-o and the null function otherwise
f = g +o_F e f = g + [o_F e of f - g]

f =o_F e f is a little-o of e near F, i.e. f = (mklittleo F f e)

[littleo of f] recovers the canonical structure of little-o of f
'o_F e printing of [o_F e of h] (h is hidden)
'a_o_F e printing of [o_F e of ?h] (?h is an existential variable)
f ~_F g f and g asymptotic equivalence
f x = g x +o_(x \near F) (e x) f x = g x + h x

where h is the function hidden by the little-o of e

Fig. 3. Summary of the new notations introduced in this article

reusable lemmas that hides the most technical parts. Other strategies exist, see for
example [Ebe17, GCP18] that we already discussed in Sect. 6.

ACKNOWLEDGMENTS

We thank Assia Mahboubi for her feedback on Bachmann-Landau notations,
Assia Mahboubi and Guillaume Melquiond for their feedback on the near tactics
and Assia Mahboubi and Pierre-Yves Strub for designing a library for real numbers
from which we drew inspiration. We are also grateful to Coquelicot authors
Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond for their inspiring library
and the many conversations we have had. We also thank Yves Bertot and Laurence
Rideau for their feedback on the draft. Finally, we would like to thank anonymous
reviewers who gave us many constructive comments which allowed to improve the
presentation of our work.
This work was partially funded by the ANR project FastRelax (ANR-14-CE25-

0018-01) of the French National Agency for Research and by JSPS KAKENHI
Grant Number 15H02687.

References

[ACM+18a] Reynald A�eldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling,
and Pierre-Yves Strub. Analysis library compatible with Mathe-
matical Components. https://github.com/math-comp/analysis/

releases/tag/0.1.0 (last acess: 2018/10/01), 2018.

[ACM+18b] Reynald A�eldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling,
and Pierre-Yves Strub. Classical analysis with Coq. In Coq Work-

shop 2018, Oxford, UK, July 8, 2018, Jul 2018. 2-pages ab-
stract available at https://staff.aist.go.jp/reynald.affeldt/

documents/coqws-reals.pdf (last access: 2018/09/28); presentation

66

https://github.com/math-comp/analysis/releases/tag/0.1.0
https://github.com/math-comp/analysis/releases/tag/0.1.0
https://staff.aist.go.jp/reynald.affeldt/documents/coqws-reals.pdf
https://staff.aist.go.jp/reynald.affeldt/documents/coqws-reals.pdf

slides available at http://cyrilcohen.fr/CoqWS2018.pdf (last ac-
cess: 2018/09/28).

[AD04] Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Is-
abelle/HOL. In David A. Basin and Michaël Rusinowitch, editors,
Proceedings of the Second International Joint Conference on Auto-

mated Reasoning, IJCAR 2004, Cork, Ireland, July 4�8, 2004, volume
3097 of Lecture Notes in Computer Science, pages 357�371. Springer,
2004.

[AF88] Jean-Marie Arnaudiès and Henri Fraysse. Cours de mathématiques,
volume 2, Analyse. Dunod, 1988.

[AM17] Mauricio Ayala-Rincón and César A. Muñoz, editors. Proceedings of

the 8th International Conference on Interactive Theorem Proving, ITP

2017, Brasília, Brazil, September 26�29, 2017, volume 10499 of Lecture
Notes in Computer Science. Springer, 2017.

[Bac94] Paul Bachmann. Die Analytische Zahlentheorie. B.G. Teubner, 1894.

[BCF+13] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela
Mayero, Guillaume Melquiond, and Pierre Weis. Wave Equation Nu-
merical Resolution: A Comprehensive Mechanized Proof of a C Pro-
gram. Journal of Automated Reasoning, 50(4):423�456, 2013.

[Ber17] Sophie Bernard. Formalization of the Lindemann-Weierstrass theorem.
In Ayala-Rincón and Muñoz [AM17], pages 65�80.

[BJMD+10] Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel, Micaela Mayero,
Jean-Michel Muller, Ioana Pasca, Laurence Rideau, and Laurent
Théry. CoqApprox. Available at http://tamadi.gforge.inria.

fr/CoqApprox/ (last access: 2018/09/28), 2010. Version 2.0.0. Now
part of the CoqInterval library (see http://coq-interval.gforge.

inria.fr/).

[BLM15] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot:
A User-Friendly Library of Real Analysis for Coq. Mathematics in

Computer Science, 9(1):41�62, 2015.

[BLM18] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. The Co-
quelicot library. Available at: http://coquelicot.saclay.inria.

fr/ (last access: 2018/09/28), May 2018. Version 3.0.2.

[BPP13] Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, ed-
itors. Proceedings of the 4th International Conference on Interactive

Theorem Proving, ITP 2013, Rennes, France, July 22�26, 2013, vol-
ume 7998 of Lecture Notes in Computer Science. Springer, 2013.

[Coh12a] Cyril Cohen. Construction of real algebraic numbers in Coq. In
Lennart Beringer and Amy P. Felty, editors, Proceedings of the Third

International Conference on Interactive Theorem Proving, ITP 2012,

Princeton, NJ, USA, August 13�15, 2012, volume 7406 of Lecture
Notes in Computer Science, pages 67�82. Springer, 2012.

[Coh12b] Cyril Cohen. Formalized algebraic numbers: construction and �rst-

order theory. PhD thesis, École polytechnique, Nov 2012.

67

http://cyrilcohen.fr/CoqWS2018.pdf
http://tamadi.gforge.inria.fr/CoqApprox/
http://tamadi.gforge.inria.fr/CoqApprox/
http://coq-interval.gforge.inria.fr/
http://coq-interval.gforge.inria.fr/
http://coquelicot.saclay.inria.fr/
http://coquelicot.saclay.inria.fr/

[Coq18] The Coq Development Team. The Coq proof assistant reference man-
ual, 2018. Version 8.8.0.

[CR17] Cyril Cohen and Damien Rouhling. A Formal Proof in Coq of LaSalle's
Invariance Principle. In Ayala-Rincón and Muñoz [AM17], pages 148�
163.

[Dia75] Radu Diaconescu. Axiom of choice and complementation. Proceedings
of the American Mathematical Society, 51:176�178, 1975.

[Ebe17] Manuel Eberl. Proving divide and conquer complexities in Is-
abelle/HOL. Journal of Automated Reasoning, 58(4):483�508, 2017.

[G+15] Georges Gonthier et al. The Mathematical Components repos-
itory. https://github.com/math-comp/math-comp (last access:
2018/09/28), 2015. Full list of contributors: https://github.com/

math-comp/math-comp/blob/master/AUTHORS.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O'Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. A Machine-Checked Proof
of the Odd Order Theorem. In Blazy et al. [BPP13], pages 163�179.

[GCP18] Armaël Guéneau, Arthur Charguéraud, and François Pottier. A �st-
ful of dollars: Formalizing asymptotic complexity claims via deduc-
tive program veri�cation. In Amal Ahmed, editor, Proceedings of

the 27th European Symposium on Programming on Programming Lan-

guages and Systems, ESOP 2018, held as part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2018, Thes-

saloniki, Greece, April 14�20, 2018, volume 10801 of Lecture Notes in
Computer Science, pages 533�560. Springer, 2018.

[GGMR09] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence
Rideau. Packaging mathematical structures. In Stefan Berghofer, To-
bias Nipkow, Christian Urban, and Makarius Wenzel, editors, Pro-
ceedings of the 22nd International Conference on Theorem Proving in

Higher Order Logics, TPHOLs 2009, Munich, Germany, August 17�

20, 2009, volume 5674 of Lecture Notes in Computer Science, pages
327�342. Springer, 2009.

[GM10] Georges Gonthier and Assia Mahboubi. An introduction to small scale
re�ection in Coq. Journal of Formalized Reasoning, 3(2):95�152, 2010.

[GMT16] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale
Re�ection Extension for the Coq system. Research Report RR-6455,
Inria Saclay Ile de France, 2016.

[Gon11] Georges Gonthier. Point-free, set-free concrete linear algebra. In Pro-

ceeding of the 2nd International Conference on Interactive Theorem

Proving, ITP 2011, Berg en Dal, The Netherlands, 22�25 August,

2011, volume 6898 of Lecture Notes in Computer Science, pages 103�
118. Springer, 2011.

[Gué18] Armaël Guéneau. Procrastination, a proof engineering technique. In
Coq Workshop 2018, Oxford, UK, July 8, 2018, July 2018. 2-pages ab-

68

https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp/blob/master/AUTHORS
https://github.com/math-comp/math-comp/blob/master/AUTHORS

stract available at http://gallium.inria.fr/~agueneau/publis/

procrastination.pdf (last access 2018/09/28); source code available
at https://github.com/Armael/coq-procrastination (last access:
2018/09/28).

[HIH13] Johannes Hölzl, Fabian Immler, and Brian Hu�man. Type Classes
and Filters for Mathematical Analysis in Isabelle/HOL. In Blazy et al.
[BPP13], pages 279�294.

[Knu98] Donald E. Knuth. Teach Calculus with Big O. Notices of the AMS,
45(6):687�688, Jun/Jul 1998. Letter to the editor of the Notices of
the American Mathematical Society. Full version available at: https:
//www-cs-faculty.stanford.edu/~knuth/calc.

[Lan09] Edmund Landau. Handbuch der Lehre von der Verteilung der

Primzahlen. B.G. Teubner, 1909.

[Lea17] The Lean mathematical components library developers. Lean math-
ematical components library. https://github.com/leanprover/

mathlib (last access: 2018/09/28), 2017. Work in progress.

[MT13] Assia Mahboubi and Enrico Tassi. Canonical Structures for the Work-
ing Coq User. In Blazy et al. [BPP13], pages 19�34.

[MT16] Assia Mahboubi and Enrico Tassi. Mathematical Components.
Available at: https://math-comp.github.io/mcb/ (last access:
2018/09/28), 2016. With contributions by Yves Bertot and Georges
Gonthier. Version of 2018/08/11.

[Rou18] Damien Rouhling. A Formal Proof in Coq of a Control Function for
the Inverted Pendulum. In June Andronick and Amy P. Felty, editors,
Proceedings of the 7th ACM SIGPLAN International Conference on

Certi�ed Programs and Proofs, CPP 2018, Los Angeles, CA, USA,

January 8-9, 2018, pages 28�41. ACM, 2018.

[Sch11a] Daniel Schepler. coq-topology: Topology library for Coq. Avail-
able at https://github.com/coq-contribs/topology (last access:
2018/09/28), 2011.

[Sch11b] Daniel Schepler. coq-zorns-lemma: Naive set theory library for Coq.
Available at https://github.com/coq-contribs/zorns-lemma (last
access: 2018/09/28), 2011.

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Ot-
mane Aït Mohamed, César A. Muñoz, and So�ène Tahar, editors,
Proceedings of the 21st International Conference on Theorem Proving

in Higher Order Logics, TPHOLs 2008, Montreal, Canada, August 18�

21, 2008, volume 5170 of Lecture Notes in Computer Science, pages
278�293. Springer, 2008.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Uni-

valent Foundations of Mathematics. https://homotopytypetheory.
org/book (last access: 2018/09/28), Institute for Advanced Study,
2013.

69

http://gallium.inria.fr/~agueneau/publis/procrastination.pdf
http://gallium.inria.fr/~agueneau/publis/procrastination.pdf
https://github.com/Armael/coq-procrastination
https://www-cs-faculty.stanford.edu/~knuth/calc
https://www-cs-faculty.stanford.edu/~knuth/calc
https://github.com/leanprover/mathlib
https://github.com/leanprover/mathlib
https://math-comp.github.io/mcb/
https://github.com/coq-contribs/topology
https://github.com/coq-contribs/zorns-lemma
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

derive.v

landau.v

hierarchy.v

topology.v

classical_sets.v

posnum.v

reals.v

Rbar.v

Rstruct.v

boolp.v forms.v

Reuse of other works,
with minor modi�cations

see Sect. A.1

Rewrite of other works,
with major modi�cations

see Sect. A.2

Original contributions
see Sect. A.2

Fig. 4. Mathematical Components Analysis �les in release 0.1.0

A. THE MATHEMATICAL COMPONENTS ANALYSIS LIBRARY

The Mathematical Components Analysis library [ACM+18a] is work-in-
progress [ACM+18b]. It serves both as context to build the techniques developed
in the present article and as a way to apply them to numerous examples. We believe
the techniques of this article are valid, regardless of the methodology for packaging
canonical structures or the inference techniques at use, hence the contents of this
Appendix are not needed stricto sensu. However, we make here our context more
precise, for the user to understand exactly which structures and mechanisms we
use in our own implementation.
Figure 4 provides an overview of the �les of Mathematical Components

Analysis. The contributions from this article are located in the �le topology.v

for �lters and near tactics (see Sect. 3), and in the �le landau.v for little-o and
big-O notations (see Sect. 4). One can �nd basic results and applications in these
same two �les. Numerous more elaborated examples of use can be found in �les
hierarchy.v and derive.v, including the examples we give in this article about
Cauchy completeness and di�erentials.
Section A.1 is about the �rst part of the library (boolp.v, reals.v, Rstruct.v,

Rbar.v, forms.v). This part is based on previous work or work-in-progress . We
do not enter into details and mostly refer to available resources when they exist
(e.g. the documentation embedded in the Coq �les, publications by their authors,
�historical information�), or provide explanations otherwise.
Section A.2 depicts the second part of the library (posnum.v, classical_sets.v,

topology.v, hierarchy.v, landau.v, and derive.v). This part was introduced
by the authors of the current article to have a ground to develop and test the
asymptotic tools. We provide more details for that part. In particular, topology.v
and hierarchy.v are based on previous work but required substantial adjustments
which are described in Sections 2.1 and 2.2; we provide here more technical details
at the risk of being redundant with existing literature.

70

A.1 Library Files Based on Previous Work

A.1.1 boolp.v, reals.v, and altreals/*.v. All these �les were originally
written by Assia Mahboubi and Pierre-Yves Strub, and are now part of Math-
ematical Components Analysis.
The �le boolp.v introduces the axioms explained in Sect. 5 and was edited

from the original version to support our work, essentially by adding the axiom
gen_choiceMixin, along with other minor contributions.
This �le reals.v provides a classical axiomatization of real numbers, as a discrete

real archimedean �eld with a least upper bound operator, which we use in a non-
critical way as an abstraction of the reals from the Coq standard library. This
axiomatic has been indeed instantiated in �le Rstruct.v (see below), but there are
some plans to provide a model solely based on axioms from boolp.v.

We did not modify the �les altreals/*.v. They were written before the ex-
istence of the Mathematical Components Analysis library, and are thus in-
dependent from all of the �les below. They are waiting to be ported to the new
framework, and we expect their rewriting will bene�t greatly from the present work.

A.1.2 Rbar.v and Rstruct.v. Both �les deal with the reals of the Coq stan-
dard library.
The �le Rbar.v originally comes from the Coquelicot library [BLM18] and has

been mostly rewritten using posnum.v.
To the best of our knowledge, the �le Rstruct.v has been �rst released in the

CoqApprox library [BJMD+10]. Its original version established that the type of
reals R of the standard library of Coq is a �eld type from the Mathematical
Components library. It has then been extended by Sophie Bernard in her for-
malization of the Lindemann-Weierstrass Theorem [Ber17] to provide R with the
rcfType structure [Coh12a, Coh12b] from the Mathematical Components li-
brary. We have extended it again to R with the realType structure from reals.v.

A.1.3 forms.v. This �le is a work-in-progress that predates Mathematical
Components Analysis. It was written by Cyril Cohen and Laurence Rideau and
is in an active development branch of the Mathematical Components library.
It will disappear from Mathematical Components Analysis once merged into
Mathematical Components. It is only used to state generic di�erentiation of
bilinear applications, thus encompassing derivation rules for the scalar product on R

and for dot products on �nite dimensional vector spaces.

A.2 Library Files Introduced with this Article

The �les introduced with this article provide in particular several interfaces cor-
responding to mathematical structures. These interfaces come as extensions of
existing Mathematical Components interfaces. The methodology for extension
is the one of packed classes [GGMR09]. Below, when it comes to interfaces, we
present only the mixin and the class.

A.2.1 posnum.v. This �le provides small-scale automation to rule out proofs
of positivity for ε's. Its use is illustrated in Line 7 of the proof script of Lemma
fun_complete in Sect. 3.4. We use canonical structures as an inference mecha-
nism [MT13].

71

A.2.2 classical_sets.v. This �le develops a theory of sets represented by
a predicate over a type (the type set) with Mathematical Components-like
notations (indeed, Mathematical Components only provides �nite sets). Some
of these notations can be seen in Fig. 1. This is inspired by previous work by Cyril
Cohen and Damien Rouhling [CR17].
This �le has been extended with pointed types. Pointed types are represented

by the type pointedType that extends the type choiceType [MT16, Sect. 7.3] of
Mathematical Components with a canonical inhabitant:

Definition point_of (T : Type) := T.

Record class_of (T : Type) := Class {

base : Choice.class_of T;

mixin : point_of T

}.

Pointed types sit at the bottom of the Mathematical Components Analysis
hierarchy, as described in Sect. 2.2.
The formalization of Zorn's lemma by Daniel Schepler [Sch11b] has been ported

to this setting.

A.2.3 topology.v. The role of this �le is explained in Sect. 2.2. It provides,
among other structures and results, the following types.

Types with Canonical Filters. The type filteredType U extends pointed types
with an operator locally such that for any t of type filteredType U, the object
locally t is a set of sets around t over the type U. In subsequent structures, this
will be identi�ed with the �lter of neighborhoods of t.

Definition locally_of U T := T -> set (set U).

Record class_of U T := Class{

base : Pointed.class_of T;

locally : locally_of U T

}.

Topological Spaces. They are represented by the type topologicalType that
extends filteredType with an operator open and three axioms:

72

Record mixin_of (T : Type) (locally : T -> set (set T)) := Mixin {

open : set (set T) ;

ax1 : forall p : T, ProperFilter (locally p) ;

ax2 : forall p : T, locally p =

[set A : set T | exists B : set T, open B /\ B p /\ B `<=` A] ;

ax3 : open = [set A : set T | A `<=` locally^~ A]

}.

Record class_of (T : Type) := Class {

base : Filtered.class_of T T;

mixin : mixin_of (Filtered.locally_op base)

}.

Given a T of type topologicalType, for any t of type T, the set of sets locally
t is now the proper �lter of neighborhoods of t (see Sect. 2.1). Indeed, it is de�ned
using the �lter base of the open's of t.
The proof of Tychono�'s Theorem by Daniel Schepler [Sch11a] has been ported

to this setting.
The �le topology.v also contains the near notations and tactics explained in

Sect. 3.

A.2.4 hierarchy.v. The structures described in this �le are all translated from
Coquelicot [BLM15, BLM18], and rebased onto structures fromMathematical
Components, as explained in Sect. 2.2.

Uniform Spaces. They are represented by the type uniformType that extends
topological spaces with a notion of ball and four axioms:

Definition locally_ {T T'} (ball : T -> R -> set T') (x : T) :=

@filter_from R _ [set x | 0 < x] (ball x).

Record mixin_of (M : Type) (locally : M -> set (set M)) := Mixin {

ball : M -> R -> M -> Prop ;

ax1 : forall x (e : R), 0 < e -> ball x e x ;

ax2 : forall x y (e : R), ball x e y -> ball y e x ;

ax3 : forall x y z e1 e2, ball x e1 y -> ball y e2 z ->

ball x (e1 + e2) z;

ax4 : locally = locally_ ball

}.

Record class_of (M : Type) := Class {

base : Topological.class_of M;

mixin : mixin_of (Filtered.locally_op base)

}.

The operator filter_from is explained in Sect. 2.1.

Complete Spaces. They are represented by the type completeType, which ex-
tends uniform spaces with the axiom that proper �lters that satisfy the Cauchy
property converge:

73

Definition axiom (T : uniformType) :=

forall (F : set (set T)), ProperFilter F ->

cauchy F -> F --> lim F.

Record class_of (T : Type) := Class {

base : Uniform.class_of T ;

mixin : axiom (Uniform.Pack base T)

}.

The property cauchy on a �lter is de�ned in Sect. 3.3, the arrow --> is explained
in Sect. 2.3 and originally comes from [CR17], and lim is explained in Sect. 2.3.

Rings with Absolute Value in R. They are represented by the type absRingType
which now extends Mathematical Components's numDomainType [Coh12b,
Chapter 4] with an absolute value in R:

Record mixin_of (D : ringType) := Mixin {

abs : D -> R;

ax1 : abs 0 = 0 ;

ax2 : abs (- 1) = 1 ;

ax3 : forall x y : D, abs (x + y) <= abs x + abs y ;

ax4 : forall x y : D, abs (x * y) = abs x * abs y ;

ax5 : forall x : D, abs x = 0 -> x = 0

}.

Record class_of (K : Type) := Class {

base : Num.NumDomain.class_of K ;

mixin : mixin_of (Num.NumDomain.Pack base K)

}.

This structure was modi�ed from Coquelicot by replacing the inequality in
axiom ax4 by an equality. Moreover this type should disappear in future work, and
simply be replaced by numDomainType.

Normed Modules. They are represented by the type normedModType, which now
extends Mathematical Components's lmodType [G+15, �le ssralg.v] with the
mixins for pointed, �ltered, topological, and uniform types:

74

Record mixin_of (K : absRingType) (V : lmodType K) loc

(m : @Uniform.mixin_of V loc) := Mixin {

norm : V -> R ;

ax1 : forall (x y : V), norm (x + y) <= norm x + norm y ;

ax2 : forall (l : K) (x : V), norm (l *: x) = abs l * norm x;

ax3 : Uniform.ball m = ball_ norm;

ax4 : forall x : V, norm x = 0 -> x = 0

}.

Record class_of (T : Type) := Class {

base : GRing.Lmodule.class_of K T ;

pointed_mixin : Pointed.point_of T ;

locally_mixin : Filtered.locally_of T T ;

topological_mixin : @Topological.mixin_of T locally_mixin ;

uniform_mixin : @Uniform.mixin_of T locally_mixin;

mixin : @mixin_of _ (@GRing.Lmodule.Pack K (Phant K) T base T) _

uniform_mixin

}.

The type lmodType K is a structure with an addition operation and a scaling
operation with coe�cients in K [Gon11].
This structure was modi�ed from Coquelicot by replacing the inequality in

axiom ax2 by an equality.

Complete Normed Modules. Finally, the structure completeNormedModType com-
bines normedModType with completeType:

Record class_of (T : Type) := Class {

base : NormedModule.class_of K T ;

mixin : Complete.axiom (Uniform.Pack base T)

}.

A.2.5 landau.v and derive.v. These two �les are original developments that
strongly rely on the tools we described in this article. They contain numerous results
about limits, continuity, and di�erentiation presented using Bachmann-Landau no-
tations and with proofs made shorter and more robust thanks to our contribution.
For example, they include the following results:

�eqolimP (in landau.v): a function f converges to a limit l if and only if f =
l + o(1),

�linear_for_continuous (in landau.v): locally bounded linear functions are
continuous,

�differentiable_continuous (in derive.v): di�erentiable functions are contin-
uous,

�is_diff_comp (in derive.v): the di�erential of a composition is the composition
of the di�erentials,

�Rolle and MVT (in derive.v): Rolle's Theorem and the Mean Value Theorem.

75

76

	Introduction
	Abstracting Asymptotic Statements using Filters
	Definition and Use of Filters
	About the Mathematical Components Analysis Hierarchy
	Notations for Limits and Convergence

	Small-Scale Filter Elimination
	Combining Filters by Hand
	The Tactics +near=>+, +near=>+, +near:+, and +endnear+
	Using +near=>+, +near:+ and +endnear+
	Using +near F => x+, +near:+ and +endnear+
	Combining all Near Tactics

	Rephrasing Concepts
	Use-Case: a Short Completeness Proof
	Differences with the Proof in Coquelicot

	Mechanization of Bachmann-Landau Notations
	The Notations f = e and f = e
	The Notations f = g + e and f = g + e
	Equational Theory
	Application: Asymptotic Equivalence
	Application: Differential of a Function
	Application: Uniform Big-O

	Coq Axioms to Make Classical Analysis Practical
	Extensionality Axioms
	Classical Axioms

	Related Work
	Conclusion
	The mathematical components analysis library
	Library Files Based on Previous Work
	boolp.v, reals.v, and altreals/*.v
	Rbar.v and Rstruct.v
	forms.v

	Library Files Introduced with this Article
	posnum.v
	classical_sets.v
	topology.v
	hierarchy.v
	landau.v and derive.v

