
Competing inheritance paths in dependent type
theory: a case study in functional analysis

Reynald Affeldt1, Cyril Cohen2, Marie Kerjean3, Assia Mahboubi3, Damien
Rouhling3, and Kazuhiko Sakaguchi4

1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 Université Côte d’Azur, Inria, France

3 Inria, France
4 University of Tsukuba, Japan

Abstract. This paper discusses the design of a hierarchy of structures
which combine linear algebra with concepts related to limits, like topol-
ogy and norms, in dependent type theory. This hierarchy is the backbone
of a new library of formalized classical analysis, for the Coq proof assis-
tant. It extends the Mathematical Components library, geared towards
algebra, with topics in analysis. Issues of a more general nature related
to the inheritance of poorer structures from richer ones arise due to this
combination. We present and discuss a solution, coined forgetful inheri-
tance, based on packed classes and unification hints.

Keywords: formalization of mathematics · dependent type theory ·
packed classes · Coq

1 Introduction

Mathematical structures are the backbone of the axiomatic method advocated
by Bourbaki [8, 9] to spell out mathematically relevant abstractions and es-
tablish the corresponding vocabulary and notations. They are instrumental in
making the mathematical literature more precise, concise, and intelligible. Mod-
ern libraries of formalized mathematics also rely on hierarchies of mathematical
structures to achieve modularity, akin to interfaces in generic programming. By
analogy, we call instance a witness of a mathematical structure on a given car-
rier. Mathematical structures, as interfaces, are essential to factor out the shared
vocabulary attached to their instances. This vocabulary comes in the form of for-
mal definitions and generic theorems, but also parsable and printable notations,
and sometimes delimited automation. Some mathematical structures are richer
than others in the sense that they extend them. Like in generic programming,
rich structures inherit the vocabulary attached to poorer structures. Working out
the precise meaning of symbols of this shared vocabulary is usually performed
by enhanced type inference, which is implemented using type classes [5, 27, 28]
or unification hints [3,17,20,24]. In particular, these mechanisms must automat-
ically identify inheritance relations between structures.

2 R. Affeldt et al.

This paper discusses the design of a hierarchy of mathematical structures
supporting a Coq [30] formal library for functional analysis, i.e., the study of
spaces of functions, and of structure-preserving transformations on them. The
algebraic vocabulary of linear algebra is complemented with a suitable notion
of “closeness” (e.g., topology, distance, norm), so as to formalize convergence,
limits, size, etc. This hierarchy is based on the packed classes methodology [17,
20], which represents structures using dependent records. The library strives to
provide notations and theories that are as generic as they would be on paper.
It is an extension of the “Mathematical Components” library [32] (hereafter
MathComp), which is geared towards algebra. This extension is inspired by the
Coquelicot real analysis library [7], which has its own hierarchy.

Fusing these two hierarchies, respectively from the MathComp and Coqueli-
cot libraries, happens to trigger several interesting issues, related to inheritance
relations. Indeed, when several constructions compete to infer an instance of
the poorer structure, the proof assistant displays indiscernible notations, or key-
words, for constructions that are actually different. This issue is not at all specific
to the formalization of functional analysis: actually, the literature reports exam-
ples of this exact problem but in different contexts, e.g., in Lean’s mathlib [11,33].
It is however more likely to happen when organizing different flavors of math-
ematics in a same coherent corpus, as this favors the presence of problematic
competing constructions. Up to our knowledge, the problem of competing in-
heritance paths in hierarchies of dependent records was never discussed per se,
beyond some isolated reports of failure, and of ad hoc solutions. We thus present
and discuss a general methodology to overcome this issue, coined forgetful in-
heritance, based on packed classes and unification hints.

The paper is organized as follows: in Sect. 2, we recall the packed classes
methodology, using a running example. Sect. 3 provides two concrete examples
of the typical issues raised by the presence of competing inheritance paths, before
describing the general issue, drawing its solution, and comparing with other type-
class-like mechanisms. Finally, Sect. 4 describes the design of our hierarchy of
structures for functional analysis, and its features, before Sect. 5 concludes.

2 Structures, inheritance, packed classes

We recall some background on the representation of mathematical structures
in dependent type theory, and on the construction of hierarchies using packed
classes. For that purpose, we use a toy running example (see the accompanying
file packed_classes.v [1]), loosely based on the case study presented in Sect. 4.

2.1 Dependent records

In essence, a mathematical structure attaches to a carrier set some data (e.g.,
operators of the structure, collections of subsets of the carrier) and prescribed
properties about these data, called the axioms of the structure. The Calculus
of Inductive Constructions [16], as implemented, e.g., by Coq [30], Agda [29], or

Competing inheritance paths in dependent type theory 3

Lean [21, 22], provides a dependent record construct, which allows to represent
a given mathematical structure as a type, and its instances as terms of that
type. A dependent record is an inductive type with a single constructor, which
generalizes dependent pairs to dependent tuples. The elements of such a tuple
are the arguments of the single constructor. They form a telescope [10], i.e.,
collection of terms, whose types can depend on the previous items in the tuple.

For example, the flatNormModule record type formalizes a structure with two
operators, fminus and fnorm, and one axiom fnormP. This structure is a toy
generalisation for the mathematical notion of normed module. Its purpose is
to simulate one basic axiom of norms via a minimal amount of constructors.
Thus, the flatNormModule has a single constructor named FlatNormModule, and
four projections (also called fields) carrier, fminus, fnorm, and fnormP, onto the
respective components of the tuple:

Structure flatNormModule := FlatNormModule {

carrier : Type ;

fminus : carrier → carrier → carrier;

fnorm : carrier → nat;

fnormP : ∀ x : carrier, fnorm (fminus x x) = 0 }.

The fnormP axioms makes use of fminus x x to avoid the introduction of a 0

of carrier type. Fields have a dependent type, parameterized by the one of the
structure:

fminus : ∀ f : flatNormModule, carrier f → carrier f → carrier f

fnormP : ∀ (f : flatNormModule) (x : carrier f), fnorm f (fminus f x x) = 0.

In this case, declaring an instance of this structure amounts to defining a term
of type flatNormModule, which packages the corresponding instances of carrier,
data, and proofs. For example, here is an instance on carrier Z (using the Z.sub

and Z.abs_nat functions from the standard library resp. as the fminus and the
fnorm operators):

Lemma Z_normP (n : Z) : Z.abs_nat (Z.sub n n) = 0. Proof. ... Qed.

Definition Z_flatNormModule := FlatNormModule Z Z.sub Z.abs_nat Z_normP.

2.2 Inference of mathematical structures

Hierarchies of mathematical structures are formalized by nesting dependent
records but naive approaches quickly incur scalability issues. Packed classes [17,
20] provide a robust and systematic approach to the organization of structures
into hierarchies. In this approach, a structure is a two-field record, which as-
sociates a carrier with a class. A class encodes the inheritance relations of the
structure and packages various mixins. Mixins in turn provide the data, and
their properties. In Coq, Record and Structure are synonyms, but we reserve
the latter for record types that represent actual structures. Let us explain the
basics of inference of mathematical structures with packed classes by replacing
the structure of Sect. 2.1 with two structures represented as packed classes. The
first one provides just a binary operator:

4 R. Affeldt et al.

1 Record isModule T := IsModule { minus_op : T → T → T }.

2 Structure module := Module {

3 module_carrier : Type;

4 module_isModule : isModule module_carrier }.

Since the module structure is expected to be the bottom of the hierarchy, we
are in the special class where the class is the same as the mixin (here, the class
would be equal to isModule). To endow the operator minus_op with a generic
infix notation, we introduce a definition minus, parameterized by an instance
of module. In the definition of the corresponding notation, the wildcard _ is a
placeholder for the instance of module to be inferred from the context.

Definition minus (M : module) :

module_carrier M → module_carrier M → module_carrier M :=

minus_op _ (module_isModule M).

Notation "x - y" := (minus _ x y).

We can build an instance of the module structure with the type of integers as the
carrier and the subtraction of integers for the operator:

Definition Z_isModule : isModule Z := IsModule Z Z.sub.

Definition Z_module := Module Z Z_isModule.

But defining an instance is not enough to make the _ - _ notation available:

Fail Check ∀ x y : Z, x - y = x - y.

To type-check the expression just above, Coq needs to fill the wildcard in the
_ - _ notation, which amounts to solving the equation module_carrier ?M ≡ Z,
where _ ≡ _ is the definitional equality (i.e., equality up to the conversion rules
of Coq type theory [30, Section “Conversion Rules” in Chapter “Calculus of
Constructions”]). One can indicate that the instance Z_module is a canonical
solution by declaring it as a canonical instance:

Canonical Z_module.

Check ∀ x y : Z, x - y = x - y.

This way, Coq fills the wildcard in minus _ x y with Z_module and retrieves as
expected the subtraction for integers.

2.3 Inheritance and packed classes

We introduce a second structure class to illustrate how inheritance is imple-
mented. This structure extends the module structure of Sect. 2.2 with a norm
operator and a property (the fact that x - x is 0 for any x):

1 Record naiveNormMixin (T : module) := NaiveNormMixin {

2 naive_norm_op : T → nat ;

3 naive_norm_opP : ∀ x : T, naive_norm_op (x - x) = 0 }.

4 Record isNaiveNormModule (T : Type) := IsNaiveNormModule {

5 nbase : isModule T ;

6 nmix : naiveNormMixin (Module _ nbase) }.

Competing inheritance paths in dependent type theory 5

7 Structure naiveNormModule := NaiveNormModule {

8 naive_norm_carrier :> Type;

9 naive_normModule_isNormModule : isNaiveNormModule naive_norm_carrier }.

10 Definition naive_norm (N : naiveNormModule) :=

11 naive_norm_op _ (nmix _ (naive_normModule_isNormModule N)).

12 Notation "| x |" := (naive_norm _ x).

The new mixin for the norm appears at line 1 (it takes a module structure as
parameter), the new class appears at line 4, and the structure5 at line 7. It is the
class that defines the inheritance relation between module and naiveNormModule

(at line 6 precisely). The definitions above are however not enough to achieve
proper inheritance. For example, naiveNormModule does not yet enjoy the _ - _

notation coming with the module structure:

Fail Check ∀ (N : naiveNormModule) (x y : N), x - y = x - y.

Here, Coq tries to solve the following equation6:

module_carrier ?M ≡ naive_norm_carrier N

The solution consists in declaring a canonical way to build a module structure
out of a naiveNormModule structure in the form of a function that Coq can use to
solve the equation above (using naiveNorm_isModule N in this particular case):

Canonical naiveNorm_isModule (N : naiveNormModule) :=

Module N (nbase _ (naive_normModule_isNormModule N)).

Check ∀ (N : naiveNormModule) (x y : N), x - y = x - y.

3 Inheritance with packed classes and type classes

When several inheritance paths compete to establish that one structure extend
the other, the proof assistant may display misleading information to the user
and prevent proofs.

3.1 Competing inheritance paths

We extend the running example of Sect. 2 with a third and last structure. Our
objective is to implement a toy generalisation of the mathematical notion of
pseudometric space. This is done by introducing a reflexive relation mimicking
the belonging of one of the argument to a unit ball around the other argument.
The hasReflRel structure below provides a binary relation (line 2) together with
a property of reflexivity (line 3):

5 The notation :> in the structure declares the carrier as a coercion [30, Chapter
“Implicit Coercions”], which means that Coq has the possibility to use the function
naive_norm_carrier to fix type-mismatches, transparently for the user.

6 The application of naive_norm_carrier is not necessary in our case thanks to the
coercion explained in footnote 5.

6 R. Affeldt et al.

1 Record isReflRel T := IsReflRel {

2 ball_op : T → T → Prop ;

3 ball_opP : ∀ x : T, ball_op x x }.

4 Structure hasReflRel := HasReflRel {

5 hasReflRel_carrier :> Type;

6 hasReflRel_isReflRel : isReflRel hasReflRel_carrier}.

7 Definition ball {N : hasReflRel} := ball_op _ (hasReflRel_isReflRel N).

8 Notation "x �� y" := (ball x y).

For the sake of the example, we furthermore declare a canonical way of build-
ing a hasReflRel structure out of a naiveNormModule structure:

Variable (N : naiveNormModule).

Definition norm_ball (x : N) := fun y : N => |x - y| ≤ 1.

(* details about naiveNormModule_isReflRel omitted *)

Canonical nnorm_hasReflRel := HasReflRel N naiveNormModule_isReflRel.

We first illustrate the issue using a construction (here the Cartesian product)
that preserves structures, and that is used to build canonical instances. First,
we define the product of module structures, and tag it as canonical:

Variables (M M’ : module).

Definition prod_minus (x y : M * M’) := (fst x - fst y, snd x - snd y).

Definition prod_isModule := IsModule (M * M’) prod_minus.

Canonical prod_Module := Module (M * M’) prod_isModule.

Similarly, we define canonical products of hasReflRel and naiveNormModule:

1 Variables (B B’ : hasReflRel) (N N’ : naiveNormModule).

2 Definition prod_ball (x y : B * B’) := fst x �� fst y ∧ snd x �� snd y.

3 (* definition of prod_isReflRel omitted from the paper *)

4 Canonical prod_hasReflRel := HasReflRel (B * B’) prod_isReflRel.

5

6 Definition prod_nnorm (x : N * N’) := max (|fst x|) (|snd x|).

7 (* definition of prod_isNNModule omitted from the paper *)

8 Canonical prod_naiveNormModule := NaiveNormModule (N * N’)

prod_isNNModule.

The problem is that our setting leads Coq’s type-checker to fail in unexpected
ways, as illustrated by the following example:

Variable P : ∀ {T}, (T → Prop) → Prop.

Example failure (Pball : ∀ V : naiveNormModule, ∀ v : V, P (ball v))

(W : naiveNormModule) (w : W * W): P (ball w).

Proof. Fail apply Pball. Abort.

The hypothesis Pball applies to any goal P (ball v) where the type of v is of
type naiveNormModule, so that one may be led to think that it should also apply
in the case of a product of naiveNormModules, since there is a canonical way to
build one. What happens is that the type-checker is looking for an instance of a
normed module that satisfies the following equation:

nnorm_hasReflRel ?N ≡
prod_hasReflRel (nnorm_hasReflRel W) (nnorm_hasReflRel W)

Competing inheritance paths in dependent type theory 7

while the canonical instance Coq infers is ?N := prod_naiveNormModule W W, which
does not satisfy the equation. In particular, (ball_op x y) is definitionally equal
to |x - y| ≤ 1 on the left-hand side and (fst x �� fst y ∧ snd x �� snd

y) on the right-hand side: the two are not definitionally equal. One can describe
the problem as the fact that the diagram in Fig. 1 does not commute definition-
ally.

naiveNormModule * naiveNormModule naiveNormModule

hasReflRel * hasReflRel hasReflRel

prod_naiveNormModule

nnorm_hasReflRel nnorm_hasReflRel

prod_hasReflRel

Fig. 1. Diagrammatic explanation for the failure of the first example of Sect. 3.1

This is of course not specific to Cartesian products and similar problems
would also occur when lifting dependent products, free algebras, closure, com-
pletions, etc., on metric spaces, topological groups, etc. as well as in simpler
settings without generic constructions as illustrated by our last example.

As a consequence of the definition of nnorm_hasReflRel, the following lemma
about balls is always true for any naiveNormModule:

Lemma ball_nball (N : nNormModule) (x y : N) : x �� y ↔ |x - y| ≤ 1.

Proof. reflexivity. Qed.

For the sake of the example, we define canonical instances of the hasReflRel

and naiveNormModule structures with integers:

Definition Z_ball (m n : Z) := (m = n ∨ m = n + 1 ∨ m = n - 1)%Z.

(* definition of Z_isReflRel omitted *)

Canonical Z_hasReflRel := HasReflRel Z Z_isReflRel.

Definition Z_naiveNormMixin := NaiveNormMixin Z_module Z.abs_nat Z_normP.

Canonical Z_naiveNormModule :=

NaiveNormModule Z (IsNaiveNormModule Z_naiveNormMixin).

Since the generic lemma ball_nball holds, the user might expect to use it
to prove a version specialized to integers. This is however not the case as the
following script shows:

Example failure (x y : Z) : x �� y ↔ |x - y| ≤ 1.

rewrite -ball_nball. (* the goal is: x �� y ↔ x �� y *)

Fail reflexivity. (* !!! *)

The problem is that on the left-hand side Coq infers the instance Z_hasReflRel
with the Z_ball relation, while on the right-hand side it infers the instance
nnorm_hasReflRel Z_naiveNormModule whose ball x y is definitionally equal to
|x - y| ≤ 1, which is not definitionally equal to the newly defined Z_ball.

8 R. Affeldt et al.

Type

naiveNormModule

hasReflRel

nnorm_hasReflRel

naiv
e_no

rm_c
arri

er

hasReflRel_carrier

Fig. 2. Diagrammatic explanation for the
type-checking failure of the second exam-
ple of Sect. 3.1: the dashed arrows represent
the inference of an instance from the carrier
type; the outer diagrams commutes, while
the inner one does not

In other words, the problem is the
multiple ways to construct a “canon-
ical instance” of hasReflRel with car-
rier Z, as in Fig. 2.

The solution to the problems ex-
plained in this section is to ensure def-
initional equality by including poorer
structures into richer ones; this way,
“deducing” one structure from the
other always amounts to erasure of
data, and this guarantees there is a
unique and canonical way of getting
it. We call this technique forgetful in-
heritance, as it is reminiscent of forgetful functors in category theory.

3.2 Forgetful inheritance with packed classes

When applied to the first problem exposed in Sect. 3.1, forgetful inheritance
makes the diagram of Fig. 1 commute definitionally. Indeed, the only way to
achieve commutation is to have nnorm_hasReflRel be a mere erasure. This means
that one needs to include inside each instance of normModule a canonical hasReflRel
(line 7 below). Furthermore the normMixinmust record the compatibility between
the operators ball_op and norm_op (line 4 below):

1 Record normMixin (T : module) (m : isReflRel T) := NormMixin {

2 norm_op : T → nat;

3 norm_opP : ∀ x, norm_op (x - x) = 0;

4 norm_ball_opP : ∀ x y, ball_op _ m x y ↔ norm_op (x - y) ≤ 1 }.

5 Record isNormModule (T : Type) := IsNormModule {

6 base : isModule T;

7 bmix : isReflRel T;

8 mix : normMixin (Module _ base) bmix }.

9 Structure normModule := NormModule {

10 norm_carrier :> Type;

11 normModule_isNormModule : isNormModule norm_carrier }.

12 Definition norm (N : normModule) :=

13 norm_op _ _ (mix _ (normModule_isNormModule N)).

Since every normModule includes a canonical hasReflRel, the construction of the
canonical hasReflRel given a normModule is exactly a projection:

Canonical norm_hasReflRel (N : normModule) :=

HasReflRel N (bmix _ (normModule_isNormModule N)).

As a consequence, the equation

norm_hasReflRel ?N ≡
prod_hasReflRel (norm_hasReflRel W) (norm_hasReflRel W)

Competing inheritance paths in dependent type theory 9

holds with prod_normModule W W and the diagram in Fig. 1 (properly updated
with the new normModule structure) commutes definitionally, and so does the
diagram in Fig. 2, for the same reasons.

Factories Because of the compatibility axioms required by forgetful inheritance,
the formal definition of a structure can depart from the expected presentation. In
fact, with forgetful inheritance, the very definition of a mathematical structure
should be read in factories, i.e., functions that construct the mixins starting
from only the expected axioms. And Structure records are rather interfaces,
in a software engineering terminology. Note that just like there can be several
equivalent presentations of a same mathematical stuctures, several mixins can
be associated with a same target Structure.

In our running example, one can actually derive, from the previously defined
naiveNormMixin, two mixins for both hasReflRel:

Variable (T : module) (m : naiveNormMixin T).

Definition fact_ball (x y : T) := naive_norm_op T m (x - y) ≤ 1.

Lemma fact_ballP (x : T) : fact_ball x x. Proof. (* omitted *). Qed.

Definition nNormMixin_isReflRel := IsReflRel T fact_ball fact_ballP.

(where the ball relation is the one induced by the norm, by construction) and
normModule:

(* details for fact_normP and fact_norm_ballP omitted from the paper *)

Definition nNormMixin_normMixin :=

NormMixin T nNormMixin_isReflRel (naive_norm_op T m)

fact_normP fact_norm_ballP.

These two mixins make naiveNormMixin the source of two factories we mark as
coercions, in order to help building two structures:

Coercion nNormMixin_isReflRel : naiveNormMixin � isReflRel.

Coercion nNormMixin_normMixin : naiveNormMixin � normMixin.

Canonical alt_Z_hasReflRel := HasReflRel Z Z_naiveNormMixin.

Canonical alt_Z_normModule :=

NormModule Z (IsNormModule Z_naiveNormMixin).

The second part of this paper provides concrete examples of factories for our
hierarchy for functional analysis.

3.3 Forgetful inheritance with type classes

Type class mechanisms [5,27,28] propose an alternative implementation of hier-
archies. Inference relations are coded using parameters rather than projections,
and proof search happens by enhancing the resolution of implicit arguments.
But the issue of competing inheritance paths does not pertain to the inference
mechanism at stake, nor to the prover which implements them. Its essence rather
lies in the non definitionally commutative diagrams as in Fig. 1 and Fig. 2.

10 R. Affeldt et al.

We illustrate this with a type classes version of our examples, in both Coq and
Lean, using a semi-bundled approach (see the accompanying files type_classes.v
and type_classes.lean [1]). Compared to the packed class approach, hierarchies
implemented using type classes remove the structure layer, which packages the
carrier and the class. Hence our example keeps only the records whose name
starts with is, declares them as type classes, and substitutes Canonical declara-
tions with appropriate Instance declarations.

The choice on the level of bundling in the resulting classes, i.e., what are
parameters of the record, and what are its fields, is not unique. For example,
one may choose to formalize rings as groups extended with additional operations
and axioms, or as a class on a type which is also a group.

Class isGroup T := IsGroup { ... };

Class isRing_choice1 T := IsRing { ring_isGroup : isGroup T; ... }.

Class isRing_choice2 T ‘{isGroup T} := IsRing { ... }.

By contrast, a structure in the packed class approach must always package with
its carrier every mixins and classes that characterize the structure. The transpo-
sition of forgetful inheritance to type class would apply to fully bundled classes
(where all the operations and axioms are bundled but not the carrier).

Because it triggers no “backtracking search”, the use of packed classes and
unification hints described in this paper avoids some issues encountered in math-
lib [33, Sect. 4.3], which are more explicitly detailed in the report on the imple-
mentation of type classes in Lean 4 [26]. We do not know either how a type
class version of forgetful inheritance would interact with the performance is-
sues described in the latter paper, or whether tabling helps. Moreover, with the
current implementations of type classes in both Coq and Lean, different choices
on bundling may have dramatic consequences on resolution feasibility and per-
formance. For example, former experiments in rewriting MathComp with type
classes in Coq did not scale up to modules on a ring. Incidentally, our com-
panion file type_classes.v illustrates some predictability issues of the current
implementation of Coq type classes.

4 The Mathematical Components Analysis library

The Coquelicot library comes with its own hierarchy of mathematical struc-
tures and the intent of the MathComp-Analysis library is to improve it with the
algebraic constructs of the MathComp library, for the analysis of multivariate
functions for example. This section explains three applications of forgetful in-
heritance that solve three design issues of a different nature raised by merging
MathComp and Coquelicot, as highlighted in Fig. 3.

We begin by an overview of the mathematical notions we deal with in this sec-
tion. A topological space is a set endowed with a topology, i.e., a total collection
of open sets closed under finite intersection and arbitrary unions. Equivalently,
a topology can be described by the neighborhood filter of each point. A neigh-
borhood of a point x is a set containing an open set around x; the neighborhood

Competing inheritance paths in dependent type theory 11

MathComp-Analysis Algebraic structures

POrder

Lattice

Total

Zmodule

Lmodule (Com)(Unit)Ring

NormedZmodule IntegralDomain

Field NumDomain

NumField RealDomain

RealField

RealClosedField ArchimedeanField

Real

Filtered

Topological

PseudoMetric

Complete PseudoMetricNormedZmodule

NormedModule

CompleteNormedModule

Fig. 3. Excerpt of MathComp and MathComp-Analysis hierarchies. Each rounded box
corresponds to a mathematical structure except for (Com)(Unit)Ring that corresponds
to several structures [17]. Dotted boxes correspond to mathematical structures intro-
duced in Sect. 4.2 and Sect. 4.3. Thick, red arrows correspond to forgetful inheritance.

filter of a point x is the set of all neighborhoods of x. In MathComp-Analysis,
neighborhood filters are the primary component of topological spaces. pseudo-
metric spaces are intermediate between topological and metric spaces. They were
introduced as the minimal setting to handle Cauchy sequences. In Coquelicot,
pseudometric spaces are called “uniform spaces” and are formalized as spaces
endowed with a suitable ball predicate. This is the topic of Sect. 4.1. Coquelicot
also provides normed spaces, i.e., K-vector spaces E endowed with a suitable
norm. On the other hand, in MathComp, the minimal structure with a norm
operator corresponds to numerical domains [12, Chap. 4] [13, Sect. 3.1], i.e.,
integral domains with order and absolute value. This situation led to a gener-
alization of MathComp described in Sect. 4.2. Finally, in Sect. 4.3, we explain
how to do forgetful inheritance across the two distinct libraries MathComp and
MathComp-Analysis.

vector

4.1 Forgetful inheritance from pseudometric to topological spaces

When formalizing topology, we run into a problem akin to Sect. 3.1 because
we face several competing notions of neighborhoods; we solve this issue with
forgetful inheritance as explained in Sect. 3.

A neighborhood of a point p can be defined at the level of topological spaces
using the notion of open as a set A that contains an open set containing p:

∃B. B is open, p ∈ B and B ⊆ A. (1)

12 R. Affeldt et al.

or at the level of pseudometric spaces as a set A that contains a ball containing p:

∃ε > 0. Bε(p) ⊆ A. (2)

We ensure these two definitions of neighborhoods coincide by adding to mixins
compatibility axioms that constrain a shared function. The function in question
maps a point to a set of neighborhoods (hereafter locally), it is shared between
the mixins for topological and pseudometric spaces, and constrained by the defi-
nitions of open set and ball as in Formulas (1) and (2). More precisely, the mixin
for topological spaces introduces the set of open sets (see line 3 below) and de-
fines neighborhoods as in Formula (1) (at line 5). We complete the definition
by specifying with a specific axiom (not explained in detail here) that neighbor-
hoods are proper filters (line 4) and with an alternative characterization of open
set (namely that an open set is a neighborhood of all of its points, line 6).

1 (* Module Topological. *)

2 Record mixin_of (T : Type) (locally : T → set (set T)) := Mixin {

3 open : set (set T) ;

4 ax1 : ∀ p : T, ProperFilter (locally p) ;

5 ax2 : ∀ p : T, locally p = [set A | ∃ B, open B ∧ B p ∧ B ⊆ A] ;

6 ax3 : open = [set A : set T | A ⊆ (fun x => locally x A)] }.

The mixin for pseudometric spaces introduces the notion of balls (line 10) and
defines neighborhoods as in Formula (2) (at line 12, locally_ ball corresponds
to the set of supersets of balls). The rest of the definition (line 11) are axioms
about ball which are omitted for lack of space.

7 (* Module PseudoMetric. *)

8 Record mixin_of (R : numDomainType) (M : Type)

9 (locally : M → set (set M)) := Mixin {

10 ball : M → R → M → Prop ;

11 ax1 : ... ; ax2 : ... ; ax3 : ... ;

12 ax4 : locally = locally_ ball }.

Here, our definition of topological space departs from the standard defini-
tion as a space endowed with a family of subsets containing the full set and
the empty set and closed under union and by finite intersection. However, the
latter definition can be recovered from the former. Factories (see Sect. 3.2) are
provided for users who want to give only open and to infer locally (using [31, file
topology.v, definition topologyOfOpenMixin]), or the other way around.

4.2 Forgetful inheritance from numerical domain to normed
Abelian group

The second problem we faced when developing the MathComp-Analysis library
is the competing formal definitions of norms and absolute values. The setting
is more complicated than Sect. 4.1 as it involves amending the hierarchy of
mathematical structures of the MathComp library.

While the codomain of a norm is always the set of (non-negative) reals,
an absolute value on a numDomainType is always an endofunction norm of type

Competing inheritance paths in dependent type theory 13

∀ (R : numDomainType), R → R. Thanks to this design choice, the absolute value
preserves some information about its input, e.g., the integrality of an integer.
On the other hand, the Coquelicot library also had several notions of norms: the
absolute value of the real numbers (from the Coq standard library), the absolute
value of a structure for rings equipped with an absolute value, and the norm
operator of normed modules (the latter two are Coquelicot-specific).

We hence generalize the norm provided by the MathComp library to encom-
pass both absolute values on numerical domains and norms on vector spaces,
and share notation and lemmas. This is done by introducing a new structure
in MathComp called normedZmodType, for normed Abelian groups, since Abelian
groups are called Z-modules in MathComp. This structure is now the poorest
structure with a norm, which every subsequent normed type will inherit from.

The definition of the normedZmodType structure requires to solve a mutual de-
pendency problem. Indeed, to state the fundamental properties of norms, such
as the triangle inequality, the codomain of the norm function should be at least
an ordered and normed Abelian group, requiring normedZmodType to be param-
eterized by such a structure. However the codomain should also inherit from
normedZmodType to share the notations for norm and absolute value.

Our solution is to dispatch the order and the norm originally contained in
numDomainType between normed Abelian groups normedZmodType and partially or-
dered types porderType as depicted in Fig. 3. We define the two following mixins
for normedZmodType and numDomainType.

Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R) :=

NormedMixin { norm_op : T → R ; (* properties of the norm omitted *) }.

Record num_mixin_of (R : ringType) (Rorder : lePOrderMixin R)

(normed : @normed_mixin_of R R Rorder) := Mixin { (* omitted *) }.

Now we define numDomainType (which is an abbreviation for NumDomain.type) using
these two mixins but without declaring inheritance from normedZmodType (yet to
be defined). More precisely, the class of numDomainType includes the mixin for
normedZmodType (at line 5 below), which will allow for forgetful inheritance:

1 (* Module NumDomain. *)

2 Record class_of T := Class {

3 base : GRing.IntegralDomain.class_of T ;

4 order_mixin : lePOrderMixin (ring_for T base) ;

5 normed_mixin : normed_mixin_of (ring_for T base) order_mixin ;

6 num_mixin : num_mixin_of normed_mixin }.

7 Structure type := Pack { sort :> Type; class : class_of sort }.

Finally, we define the class of normedZmodType, parameterized by a numDomainType:

(* Module NormedZmodule. *)

Record class_of (R : numDomainType) (T : Type) := Class {

base : GRing.Zmodule.class_of T ;

normed_mixin : @normed_mixin_of R (@GRing.Zmodule.Pack T base)

(NumDomain.class R) }.

14 R. Affeldt et al.

It is only then that we declare inheritance from the normedZmodType structure to
numDomainType, effectively implementing forgetful inheritance. We finally end up
with a norm of the general type

norm : ∀ (R : numDomainType) (V : normedZmodType R), V → R.

Illustration: sharing of norm notation and lemmas As an example, we explain
the construction of two norms and show how they share notation and lemmas. In
MathComp, the type of matrices is ’M[K]_(m,n) where K is the type of coefficients.
The norm mx_norm takes the maximum of the absolute values of the coefficients:

Variables (K : numDomainType) (m n : nat).

Definition mx_norm (x : ’M[K]_(m, n)) : K := \big[maxr/0]_i ‘|x i.1 i.2|.

This definition uses the generic big operator [6] to define a “big max” operation
out of the binary operation maxr. Similarly, we define a norm for pairs of elements
by taking the maximum of the absolute value of the two projections7:

Variables (R : numDomainType) (U V : normedZmodType R).

Definition pair_norm (x : U * V) : R := maxr ‘|x.1| ‘|x.2|.

We then go on proving that these definitions satisfy the properties of the norm
and declare canonical instances of normedZmodType for matrices and pairs (see [31]
for details). All this setting is of course carried out in advance and the user
only sees one notation and one set of lemmas (for example ler_norm_add for the
triangle inequality), so that (s)he can mix various norms transparently in the
same development, as in the following two examples:

Variable (K : numDomainType).

Example mx_triangle m n (M N : ’M[K]_(m, n)) : ‘|M + N| ≤ ‘|M| + ‘|N|.

Proof. apply ler_norm_add. Qed.

Example pair_triangle (x y : K * K) : ‘|x + y| ≤ ‘|x| + ‘|y|.

Proof. apply ler_norm_add. Qed.

One could fear that the newly introduced structures make the library harder
to use since that, to declare a canonical numDomainType instance, a user also
needs now to declare canonical porderType and normedZmodType instances of the
same type. Here, the idea of factories (Sect. 3.2) comes in handy for the original
numDomainType mixin has been re-designed as a factory producing porderType,
normedZmodType, and numDomainType mixins in order to facilitate their declaration.

4.3 Forgetful inheritance from normed modules to pseudometric
spaces

The combination of the MathComp library with topological structures ultimately
materializes as a mathematical structure for normed modules. It is made possible
by introducing an intermediate structure that combines norm (from algebra)

7 The actual code of mx_norm and pair_norm is slightly more complicated because it
uses a type for non-negative numeric values, see [31, file normedtype.v].

Competing inheritance paths in dependent type theory 15

with pseudometric (from topology) into normed Abelian groups. The precise
justification for this first step is as follows.

Since normed Abelian groups have topological and pseudometric space struc-
tures induced by the norm, NormedZmodType should inherit from PseudoMetricType.
To do so, we can (1) insert a new structure above NormedZmodType, or (2) create
a common extension of PseudoMetricType and NormedZmodType. We choose (2) to
avoid amending the MathComp library. This makes both NormedZmodType and its
extension PseudoMetricNormedZmodType normed Abelian groups, where the former
is inadequate for topological purposes.

The only axiom of this extension is the compatibility between the pseudo-
metric and the norm, as expressed line 5 below, where PseudoMetric.ball has
been seen in Sect. 4.1 and the right-hand side represents all the ternary relations
λx, ε, y. |x− y| < ε:

1 (* Module PseudoMetricNormedZmodule. *)

2 Variable R : numDomainType.

3 Record mixin_of (T : normedZmodType R) (locally : T → set (set T))

4 (m : PseudoMetric.mixin_of R locally) :=

5 Mixin { _ : PseudoMetric.ball m = ball_ (fun x => ‘|x|) }.

The extension is effectively performed by using this mixin in the following class
definition at line 12 (see also Fig. 3):

6 Record class_of (T : Type) := Class {

7 base : Num.NormedZmodule.class_of R T ; ... ;

8 locally_mixin : Filtered.locally_of T T ;

9 topological_mixin : @Topological.mixin_of T locally_mixin ;

10 pseudometric_mixin : @PseudoMetric.mixin_of R T locally_mixin ;

11 mixin :

12 @mixin_of (Num.NormedZmodule.Pack _ base) _ pseudometric_mixin }.

Finally, the bridge between algebraic and topological structures is completed by
a common extension of a normed Abelian group (PseudoMetricNormedZmodType)
with a left-module (lmodType from the MathComp library, which provides scalar
multiplication), extended with the axiom of linearity of the norm for the scalar
product (line 5 below).

1 (* Module NormedModule. *)

2 Variable (K : numDomainType).

3 Record mixin_of

4 (V : pseudoMetricNormedZmodType K) (scale : K → V → V) :=

5 Mixin { _ : ∀ (l : K) (x : V), ‘|scale l x| = ‘|l| * ‘|x| }.

One can again observe here the overloaded notation for norms explained in
Sect. 4.2. The accompanying file scalar_notations.v [1] provides an overview of
MathComp-Analysis operations regarding norms and scalar notations.

We ensured that the structure of normed modules indeed serves its intended
purpose of enabling multivariate functional analysis by generalizing existing the-
ories of Bachmann-Landau notations and of differentiation [2, Sect. 4].

16 R. Affeldt et al.

5 Conclusion and related work

This paper has two main contributions: forgetful inheritance using packed classes,
and the hierarchy of the MathComp-Analysis library. The latter library is still in
its infancy and covers far less real and complex analysis than the libraries avail-
able in HOL Light and Isabelle/HOL [19,23]. However, differences in foundations
matter here, and the use of dependent types in type-class-like mechanisms is
instrumental in the genericity of notations illustrated in this paper. Up to our
knowledge, no other existing formal library in analysis has comparable sharing
features.

The methodology presented in this paper to tame competing inheritance
paths in hierarchies of dependent records is actually not new. The original de-
scription of packed classes [17, end of Sect. 3.1] already mentions that a choice
operator (in fact, a mixin) should be included in the definition of a structure
for countable types, even if choice operators can be defined for countable types
in Coq without axiom. Yet, although the MathComp library uses forgetful in-
heritance at several places in its hierarchy, this solution was never described in
earlier publications, nor was the issue precisely described. Proper descriptions,
as well as the comparison with other inference techniques, are contributions of
the present paper.

As explained in Sect. 3.3, type classes based on augmented inference of im-
plicit arguments also allow for a variant of forgetful inheritance. For instance,
Buzzard et al. mention that this pattern is used for defining metric spaces both
in Lean and Isabelle/HOL’s libraries [11, Sect. 3]. In the same paper, the authors
describe another formalization issue, about completing abelian groups and rings,
pertaining to the same problem [11, Sect. 5.3], and which can be solved as well
using forgetful inheritance.

Extensional flavors of dependent type theory could make the problematic
diagram in Fig.1 commute judgmentally. However, to the best of our knowledge,
the related tools [4,15] available at the time of writing do not implement any of
the type class mechanisms discussed here.

Packed classes, and forgetful inheritance, already proved robust and efficient
enough to formalize and populate large hierarchies [18], where “large” applies
both to the number of structures and to the number of instances. Arguably,
this approach also has drawbacks: defining deep hierarchies becomes quite ver-
bose, and inserting new structures is tedious and error-prone. We argue that,
compared to their obvious benefits in control and efficiency of the proof search,
this is not a fundamental issue. As packed classes are governed by systematic
patterns and invariants, this rather calls for more inspection [25] and automated
generation [14] tooling, which is work in progress.

Acknowledgments The authors are grateful to Georges Gonthier for the many
fruitful discussions that helped rewriting parts of MathComp and MathComp-
Analysis library. We also thank Arthur Charguéraud and all the anonymous re-
viewers for their comments on the successive versions of this paper.

Competing inheritance paths in dependent type theory 17

References

1. Affeldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., Sak-
aguchi, K.: Formalizing functional analysis structures in dependent
type theory (accompanying material). https://math-comp.github.io/

competing-inheritance-paths-in-dependent-type-theory (2020), con-
tains the files packed_classes.v, packed_classes.v, type_classes.lean, and
scalar_notations.v, and a stand-alone archive containing snapshots of the
Mathematical Components [32] and Analysis [31] libraries

2. Affeldt, R., Cohen, C., Rouhling, D.: Formalization Techniques for Asymptotic
Reasoning in Classical Analysis. Journal of Formalized Reasoning 11, 43–76 (2018)

3. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: Hints in unification.
In: 22nd International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2009), Munich, Germany, August 17–20, 2009. Lecture Notes in Com-
puter Science, vol. 5674, pp. 84–98. Springer (2009)

4. Bauer, A., Gilbert, G., Haselwarter, P.G., Pretnar, M., Stone, C.A.: Design and
implementation of the andromeda proof assistant. CoRR abs/1802.06217 (2018),
http://arxiv.org/abs/1802.06217

5. Bauer, A., Gross, J., Lumsdaine, P.L., Shulman, M., Sozeau, M., Spitters, B.: The
HoTT library: a formalization of homotopy type theory in Coq. In: 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs (CPP 2017), Paris, France,
January 16–17, 2017. pp. 164–172. ACM (2017)

6. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: 21st
International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2008), Montreal, Canada, August 18–21, 2008. Lecture Notes in Computer Science,
vol. 5170, pp. 86–101. Springer (2008)

7. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of real
analysis for Coq. Mathematics in Computer Science 9(1), 41–62 (2015)

8. Bourbaki, N.: The architecture of mathematics. The American Mathematical
Monthly 57(4), 221–232 (1950), http://www.jstor.org/stable/2305937

9. Bourbaki, N.: Théorie des ensembles. Éléments de mathématique, Springer (2006),
original Edition published by Hermann, Paris, 1970

10. de Bruijn, N.G.: Telescopic mappings in typed lambda calculus. Information and
Computation 91(2), 189–204 (1991)

11. Buzzard, K., Commelin, J., Massot, P.: Formalising perfectoid spaces. In: 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP 2020),
New Orleans, LA, USA, January 20–21, 2020. pp. 299–312. ACM (2020)

12. Cohen, C.: Formalized algebraic numbers: construction and first-order the-
ory. (Formalisation des nombres algébriques : construction et théorie du pre-
mier ordre). Ph.D. thesis, Ecole Polytechnique X (2012), https://pastel.

archives-ouvertes.fr/pastel-00780446

13. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination. Logical Methods in Computer Science 8(1) (2012)

14. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: algebraic hierarchies made
easy in Coq with Elpi (2020), accepted in the proceedings of FSCD 2020, available
at https://hal.inria.fr/hal-02478907

15. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the NuPRL Proof Development
System. Prentice-Hall, NJ (1986)

18 R. Affeldt et al.

16. Coquand, T., Paulin, C.: Inductively defined types. In: International Conference
on Computer Logic (COLOG-88), Tallinn, USSR, December 1988. Lecture Notes
in Computer Science, vol. 417, pp. 50–66. Springer (1990)

17. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Theorem Proving in Higher-Order Logics (TPHOL 2009). Lecture
Notes in Computer Science, vol. 5674, pp. 327–342. Springer (2009)

18. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux,
S.L., Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
4th International Conference on Interactive Theorem Proving (ITP 2013), Rennes,
France, July 22–26, 2013. Lecture Notes in Computer Science, vol. 7998, pp. 163–
179. Springer (2013)

19. Harrison, J.: The HOL Light System REFERENCE (2017), available at https:

//www.cl.cam.ac.uk/~jrh13/hol-light/index.html.
20. Mahboubi, A., Tassi, E.: Canonical structures for the working Coq user. In: 4th

International Conference on Interactive Theorem Proving (ITP 2013), Rennes,
France, July 22–26, 2013, Lecture Notes in Computer Science, vol. 7998, pp. 19–
34. Springer (2013)

21. Microsoft Reasearch: L∃∀N THEOREM PROVER. https://leanprover.github.
io (2020)

22. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Automated Deduction - CADE-25 - 25th
International Conference on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9195, pp. 378–388.
Springer (2015)

23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle HOL: A Proof Assistant for Higher-
Order Logic. Springer-Verlag (2019), availble at https://isabelle.in.tum.de/

doc/tutorial.pdf

24. Säıbi, A.: Outils Génériques de Modélisation et de Démonstration pour la For-
malisation des Mathématiques en Théorie des Types. Application à la Théorie
des Catégories. (Formalization of Mathematics in Type Theory. Generic tools of
Modelisation and Demonstration. Application to Category Theory). Ph.D. thesis,
Pierre and Marie Curie University, Paris, France (1999)

25. Sakaguchi, K.: Validating mathematical structures. In: 10th International Joint
Conference on Automated Reasoning (IJCAR 2020). Lecture Notes in Computer
Science, Springer (2020)

26. Selsam, D., Ullrich, S., de Moura, L.: Tabled typeclass resolution (2020), available
at https://arxiv.org/abs/2001.04301

27. Sozeau, M., Oury, N.: First-Class Type Classes. In: 21st International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2008), Montréal, Québec,
Canada, August 18–21, 2008. Lecture Notes in Computer Science, vol. 5170, pp.
278–293. Springer (2008)

28. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Science 21(4), 795–825 (2011)

29. The Agda Team: The Agda User Manual (2020), available at https://agda.

readthedocs.io/en/v2.6.0.1. Version 2.6.0.1
30. The Coq Development Team: The Coq Proof Assistant Reference Manual. Inria

(2019), available at https://coq.inria.fr. Version 8.10.2
31. The Mathematical Components Analysis Team: The Mathematical Components

Analysis library. https://github.com/math-comp/analysis (2017)

Competing inheritance paths in dependent type theory 19

32. The Mathematical Components Team: The Mathematical Components library.
https://github.com/math-comp/math-comp (2007)

33. The mathlib Community: The Lean mathematical library. In: 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP 2020), New Or-
leans, LA, USA, January 20–21, 2020. pp. 367–381. ACM (2020)

