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Abstract Goal-directed proof search in first-order logic uses meta-
variables to delay the choice of witnesses; substitutions for such variables
are produced when closing proof-tree branches, using first-order unific-
ation or a theory-specific background reasoner. This paper investigates
a generalisation of such mechanisms whereby theory-specific constraints
are produced instead of substitutions. In order to design modular proof-
search procedures over such mechanisms, we provide a sequent calcu-
lus with meta-variables, which manipulates such constraints abstractly.
Proving soundness and completeness of the calculus leads to an axiomat-
isation that identifies the conditions under which abstract constraints can
be generated and propagated in the same way unifiers usually are. We
then extract from our abstract framework a component interface and a
specification for concrete implementations of background reasoners.

1 Introduction

A broad literature studies the integration of theory reasoning with generic auto-
mated reasoning techniques. Following Stickel’s seminal work [16], different levels
of interaction have been identified [2] between a theory-generic foreground reasoner
and a theory-specific background reasoner, with a specific scheme for the literal
level of interaction. In absence of quantifiers, the DPLL(T ) architecture [11] is
an instance of the scheme and a successful basis for SMT-solving, combining
SAT-solving techniques for boolean logic with a procedure that decides whether
a conjunction of ground literals is consistent with a background theory T .

Our contribution falls into such a scheme, but in presence of quantifiers, and
hence of non-ground literals. When given a conjunction of these, the background
reasoner provides a means to make this conjunction inconsistent with T , possibly
by instantiating some (meta-)variables [2]. Technically, it produces a T -refuter
that contains a substitution.

Beckert [5] describes how this approach can be applied to analytic tableaux, in
particular free variable tableaux: T -refuters are produced to extend and eventu-
ally close a tableau branch, while the substitutions that they contain are globally
applied to the tableau, thus affecting the remaining open branches. In fact, the
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only way in which closing a branch affects the other branches is the propagation
of these substitutions, as it is the case for tableaux without theory reasoning.
This is well-suited for some theories like equality, for which rigid E-unification
provides a background reasoner (see e.g. [4]), but maybe not for other theories.
For instance, the case of Linear Integer Arithmetic (LIA) was addressed by us-
ing arithmetic constraints, and quantifier elimination, in the Model Evolution
calculus [1] and the Sequent Calculus [14] (which is closer to the above tableaux).

This paper develops sequent calculi with a more general abstract notion of
constraints so that more theories can be treated in a similar way, starting with all
theories admitting quantifier elimination. But it also covers those total theories
(total in the sense that T -refuters are just substitutions) considered by Beck-
ert [5] for free variable tableaux, for which constraints are simply substitutions.

Sect. 2 presents a sequent calculus LK1 with ground theory reasoning (as in
DPLL(T )) and various target theories that we intend to capture. Sect. 3 intro-
duces our abstract systems of constraints. Sect. 4 presents a sequent calculus
LK?

1 similar to Rümmer’s PresPredCS calculus [14], but generalised with abstract
constraints. It collects constraints from the parallel/independent exploration of
branches, with the hope that their combination remains satisfiable. Sect. 5 and 6
present a variant LK?〉

1 where the treatment of branching is asymmetric, reflect-
ing a sequential implementation of proof search: the constraint that is produced
to close one branch affects the exploration of the next branch, as in free variable
tableaux [5]. Each time, we prove soundness and completeness relative to the
reference sequent calculus LK1. From these proofs we extract an axiomatisation
for our background theory reasoner and its associated constraints. In Sect. 7 this
axiomatisation is used to define a component interface with a formal specifica-
tion, for our quantifier-handling version 2.0 of the Psyche platform for theorem
proving [12]. We conclude by discussing related works and future work.

2 Ground calculus and examples

The simple sequent calculus that we use in this paper uses the standard first-
order notions of term, literal, eigenvariable, and formula. Following standard
practice in tableaux methods or the linear logic tradition, we opt for a com-
pact one-sided presentation of the sequent calculus, here called LK1. Its rules
are presented in Fig. 1, where Γ is a set (intuitively seen as a disjunction) of
first-order formulae (in negation-normal form) and Γlit is the subset of its literals;
A[x := t] denotes the substitution of term t for all free occurrences of variable x
in formula A; finally, |= denotes a specific predicate, called the ground validity
predicate, on sets of ground literals (i.e. literals whose variables are all eigenvari-
ables). This predicate is used to model a given theory T , with the intuition that
|=Γlit holds when the disjunction of the literals in Γ is T -valid. Equivalently, it
holds when the conjunction of their negations is T -inconsistent, as checked by
the decision procedures used in SMT-solving. Likewise, checking whether |=Γlit
holds is performed by a background reasoner, while the bottom-up application
of the rule of LK1 can serve as the basis for a tableaux-like foreground reasoner.
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|=Γlit
` Γ

` Γ,A ` Γ,B

` Γ,A ∧B

` Γ,A,B

` Γ,A ∨B

` Γ,A [x := t] , ∃xA

` Γ,∃xA

` Γ,A [x := x]

` Γ,∀xA
where x is a fresh eigenvariable

Figure 1. The LK1 sequent calculus modulo theories

But a realistic proof-search procedure is in general unable to provide an
appropriate witness t “out of the blue” at the time of applying an existential rule.
We shall use meta-variables (called free variables in tableaux terminology) to
delay the production of such instances until the constraints of completing/closing
branches impact our choice possibilities. The way this happens heavily depends
on the background theory, and below we give a few examples (more background
on the technical notions can be found for instance in Beckert’s survey [5]):

Example 1 (Pure first-order logic). In the empty theory, closing a branch ` Γ is
done by finding a literal l and its negation l in Γ or, if meta-variables were used,
by finding a pair l and l′ and a substitution σ for meta-variables that unifies l
and l′. Such a first-order unifier σ may be produced by the sole analysis of ` Γ ,
or by the simultaneous analysis of the branches that need to be closed. Since the
latter problem is still decidable, a global management of unification constraints is
sometimes preferred, avoiding the propagation of unifiers from branch to branch.

Example 2 (First-order logic with equality). When adding equality, closing a
branch ` Γ is done by finding in Γ either an equality t=u such that ΓE |=E t=u,
or a pair of literals p(t1, . . . , tn) and p(u1, . . . , un) such that ΓE |=E t1 =u1 ∧
· · · ∧ tn = un, where ΓE is the set of all equalities a= b such that a 6= b is in
Γ , and |=E is entailment in the theory of equality. Congruence closure can be
used to check this entailment. If meta-variables were used, then a substitution
σ for meta-variables has to be found such that e.g. σ(ΓE) |=E σ(t) =σ(u), a
problem known as rigid E-unification. While this problem is decidable, finding
a substitution that simultaneously closes several open branches (simultaneous
rigid E-unification) is undecidable. A natural way to use rigid E-unification is to
produce a stream of substitutions from the analysis of one branch and propagate
them into the other branches; if at some point we have difficulties closing one of
these, we can try the next substitution in the stream.

The idea of producing streams of substitutions at the leaves of branches
(advocated by Giese [8]) can be taken further:

Example 3 (Theories with ground decidability). Any theory whose ground valid-
ity predicate is decidable has a semi-decision procedure that “handles”
meta-variables: to close a branch ` Γ with meta-variables, enumerate as a stream
all substitutions to ground terms (i.e. terms whose variables are all eigenvari-
ables), and filter out of it all substitutions σ such that 6|= σ(Γ )lit. Stream pro-
ductivity -and therefore decidability- may thus be lost, but completeness of proof
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search in first-order logic already requires fairness of strategies with e.g. iterative
deepening methods, which may as well include the computation of streams.

While this mostly seems an impractical theoretical remark, heuristics can be
used (e.g. first trying those ground terms that are already present in the problem)
that are not far from what is implemented in SMT-solvers (like triggers [6]).

The enumeration strategy can also be theory-driven, and also make use of
substitutions to non-ground terms: An interesting instance of this is higher-order
logic expressed as a first-order theory, λ-terms being encoded as first-order terms
using De Bruijn’s indices, and βη-equivalence being expressed with first-order
axioms. Similarly to Example 1, closing a branch with meta-variables requires
solving (higher-order) unification problems, whose (semi-decision) algorithms
can be seen as complete but optimised enumeration techniques.

All of the above examples use substitutions of meta-variables as the output of
a successful branch closure, forming total background reasoners for the tableaux
of [5]. But by letting successful branch closures produce a more general notion
of theory-specific constraints, we also cover examples such as:

Example 4 (Theories with quantifier elimination). When a theory satisfies quan-
tifier elimination (such as linear arithmetic), the provability of arbitrary formulae
can be reduced to the provability of quantifier-free formulae. This reduction can
be done with the same proof-search methodology as for the previous examples,
provided successful branch closures produce other kinds of data-structures. For
instance with p an uninterpreted predicate symbol, l(x, y) := 3x ≤ 2y ≤ 3x+1
and l′(x, y) := 99 ≤ 3y+2x ≤ 101, the foreground reasoner will turn the sequent

` (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))
into a tree with 4 branches, with meta-variables ?X, ?X ′, ?Y , and ?Y ′:

` p(?X, ?Y ), p(?X ′, ?Y ′) ` l(?X, ?Y ), p(?X ′, ?Y ′)
` p(?X, ?Y ), l′(?X ′, ?Y ′) ` l(?X, ?Y ), l′(?X ′, ?Y ′)

While it is clear that the background reasoner will close the top-left leaf by pro-
ducing the substitution identifying ?X with ?X ′, ?Y with ?Y ′, it is hard to see
how the analysis of any of the other branches could produce, on its own and not
after a lengthy enumeration, a substitution that is, or may be refined into, the
unique integer solution ?X 7→ 15, ?Y 7→ 23. Hence the need for branches to com-
municate to other branches more appropriate data-structures than substitutions,
like constraints (in this case, arithmetic ones).

In the rest of this paper, all of the above examples are instances of an abstract
notion of theory module that comes with its own system of constraints.

3 Constraint Structures

Meta-variables (denoted ?X, ?Y , etc) can be thought of as place-holders for yet-
to-come instantiations. Delayed though these may be, they must respect the
freshness conditions from System LK1, so dependencies between meta-variables
and eigenvariables must be recorded during proof search.
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While Skolem symbols are a convenient implementation of such dependencies
when the theory reasoner is unification-based (occurs check ruling out incorrect
instantiations for free), we record them in a data-structure, called domain, at-
tached to each sequent. Two operations are used on domains: adding to a domain
d a fresh eigenvariable x (resp. meta-variable ?X) results in a new domain d; x
(resp. d; ?X). The use of the notation always implicitly assumes x (resp. ?X) to
be fresh for d. An initial domain d0 is also used before proof search introduces
fresh eigenvariables and meta-variables.5

Definition 1 (Terms, formulae with meta-variables). A term (resp. for-
mula) of domain d is a term (resp. formula) whose variables (resp. free variables)
are all eigenvariables or meta-variables declared in d. A term (resp. formula) is
ground if it contains no meta-variables. Given a domain d, we define Td to be
the set of ground terms of domain d. A context of domain d is a multiset of
formulae of domain d. In the rest of this paper, a free variable (of domain d)
means either an eigenvariable or a meta-variable (declared in d).

In this setting, the axiom rule of system LK1 is adapted to the presence of
meta-variables in literals, so as to produce theory-specific constraints on (yet-
to-come) instantiations. We characterise the abstract structure that they form:

Definition 2 (Constraint structures). A constraint structure is:
– a family of sets (Ψd)d, indexed by domains and satisfying Ψd;x = Ψd for all

domains d and eigenvariables x; elements of Ψd are called constraints of
domain d, and are denoted σ, σ′, etc.

– a family of mappings from Ψd;?X to Ψd for all domains d and meta-variables
?X, called projections, mapping constraints σ ∈ Ψd;?X to constraints σ↓ ∈ Ψd.
A meet constraint structure is a constraint structure (Ψd)d with a binary

operator (σ, σ′) 7→ σ∧σ′ on each set Ψd.
A lift constraint structure is a constraint structure (Ψd)d with a map σ 7→ σ↑

from Ψd to Ψd;?X for all domains d and meta-variables ?X.

Intuitively, each mapping from Ψd;?X to Ψd projects a constraint concerning
the meta-variables declared in (d; ?X) to a constraint on the meta-variables in
d. Different constraints can be used for different theories:
Example 5. 1. In Examples 1 and 2, it is natural to take Ψd to be the set

whose elements are either ⊥ (to represent the unsatisfiable constraint) or a
substitution σ for the meta-variables in d.6 Projecting a substitution from
Ψd;?X is just erasing its entry for ?X. The meet of two substitutions is their
most general unifier, and the lift of σ ∈ Ψd into Ψd;?X is σ,?X 7→?X.

5 For instance, a domain may be implemented as a pair (Φ;∆), where Φ is the set
of declared eigenvariables and ∆ maps every declared meta-variable to the set
of eigenvariables on which it is authorised to depend. With this implementation,
(Φ;∆); x := (Φ,x;∆) and (Φ;∆); ?X := (Φ;∆, ?X 7→ Φ). We also set d0 = (Φ0, ∅),
with Φ0 already containing enough eigenvariables so as to prove e.g. ∃x(p(x)∨p(x)).

6 Technically, the term σ(?X), if defined, features only eigenvariables among those
authorised for ?X by d, and meta-variables outside d or mapped to themselves by σ.
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2. In Example 3, the default constraint structure would restrict the above to
substitutions that map meta-variables to either themselves or to ground
terms, unless a particular theory-specific enumeration mechanism could make
use of non-ground terms (such as higher-order unification).

3. In Example 4, Ψd;x = Ψd for any d, and we take Ψd0 (resp. Ψd;?X) to be the set
of quantifier-free formulae of domain d0 (resp. d; ?X). Quantifier elimination
provides projections, the meet operator is conjunction and the lift is identity.

4 A system for proof search with constraints

In the rest of this section (Ψd)d denotes a fixed meet constraint structure.

4.1 The constraint-producing sequent calculus LK?
1

This sequent calculus is parameterised by a background theory reasoner that
can handle meta-variables. The reasoner is modelled by a constraint-producing
predicate that generalises the ground validity predicate used in System LK1.

Definition 3 (LK?
1 sequent calculus).

A constraint-producing predicate is a family of relations (|=d)d, indexed by
domains d, relating sets A of literals of domain d with constraints σ in Ψd; when
it holds, we write |=dA � σ.

Given such a predicate (|=d)d, the constraint-producing sequent calculus LK?
1

manipulates sequents of the form `d Γ � σ, where Γ is a context and σ is a
constraint, both of domain d. Its rules are presented in Fig. 2.

|=dΓlit � σ
`d Γ � σ

`d Γ,A � σ `d Γ,B � σ′

`d Γ,A ∧B � σ∧σ′
`d Γ,A,B � σ

`d Γ,A ∨B � σ

`d;?X Γ,A [x :=?X] , ∃xA � σ

`d Γ,∃xA � σ↓
where ?X is a fresh meta-variable

`d;x Γ,A [x := x] � σ

`d Γ,∀xA � σ
where x is a fresh eigenvariable

Figure 2. The constraint-producing sequent calculus LK?
1

In terms of process, a sequent `d Γ � σ displays the inputs Γ, d and the
output σ of proof search, which starts building a proof tree, in system LK?

1, from
the root. The sequent at the root would typically be of the form `d0 Γ � σ, with
σ ∈ Ψd0 to be produced as output. The constraints are produced at the leaves,
and propagated back down towards the root.

Example 6. In Examples 1, 2, 3, the constraint-producing predicate |=dA � σ
holds if, respectively, σ is the most general unifier of two dual literals in A, σ is
an output of rigid E-unification on A, σ is a ground substitution for which σ(A)
is T -inconsistent. In Example 4, |=dA � σ holds if the quantifier-free formula σ
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(of appropriate domain) implies A (as a disjunction). For our specific example,
which also involves uninterpreted predicate symbols, proof search in system LK?

1
builds a tree

`d p(?X, ?Y ), p(?X ′, ?Y ′) � σ1 `d l(?X, ?Y ), p(?X ′, ?Y ′) � σ2
`d p(?X, ?Y ), l′(?X ′, ?Y ′) � σ3 `d l(?X, ?Y ), l′(?X ′, ?Y ′) � σ4

. . .

`d (p(?X, ?Y ) ∧ l(?X, ?Y )), (p(?X ′, ?Y ′) ∧ l′(?X ′, ?Y ′)) � σ

. . .

`d0 (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))) � σ↓↓↓↓
where d := ?X; ?Y ; ?X ′; ?Y ′, the background reasoner produces σ1 := {?X =
?X ′; ?Y =?Y ′}, σ2 := {3?X ≤ 2?Y ≤ 3?X+1}, σ3 := {99 ≤ 3?Y ′+2?X ′ ≤ 101},
and σ4 := σ2 (σ4 := σ3 also works); then σ := (σ1∧σ2)∧(σ3∧σ4) and finally
σ↓↓↓↓, obtained by quantifier elimination from σ, is the trivially true formula.

System LK?
1 is very close to Rümmer’s PresPredCS System [14], but using ab-

stract constraints instead of linear arithmetic constraints. Using LK?
1 with the

constraint structure of Example 5.3 implements Rümmer’s suggestion [14] to
eliminate quantifiers along the propagation of constraints down to the root.

4.2 Instantiations and Compatibility with Constraints

Notice that, in system LK?
1, no instantiation for meta-variables is actually ever

produced. Instantiations would only come up when reconstructing, from an LK?
1

proof, a proof in the original calculus LK1. So as to relate constraints to actual
instantiations, we formalise what it means for an instantiation to satisfy, or
be compatible with, a constraint of domain d. Such an instantiation should
provide, for each meta-variable, a term that at least respects the eigenvariable
dependencies specified in d, as formalised in Definition 4. Beyond this, what it
means for an instantiation to be compatible with a constraint is specific to the
theory and we simply identify in Definition 5 some minimal axioms. We list these
axioms, along with the rest of this paper’s axiomatisation, in Fig. 4 on page 13.

Definition 4 (Instantiation).
The set of instantiations of domain d, denoted Σd, is the set of mappings

from meta-variables to ground terms defined by induction on d as follows:
Σd0 = ∅ Σd;x = Σd Σd;?X = {ρ,?X 7→t | t ∈ Td, ρ ∈ Σd}

For a term t (resp. a formula A, a context Γ ) of domain d and an instanti-
ation ρ ∈ Σd, we denote by ρ(t) (resp. ρ(A), ρ(Γ )) the result of substituting in
t (resp. A, Γ ) each meta-variable ?X in d by its image through ρ.

Definition 5 (Compatibility relation). A compatibility relation is a (family
of) relation(s) between instantiations ρ ∈ Σd and constraints σ ∈ Ψd for each
domain d, denoted ρεσ, that satisfies Axiom Proj of Fig. 4.

If the constraint structure is a meet constraint structure, we say that the
compatibility relation distributes over ∧ if it satisfies Axiom Meet of Fig. 4.
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Another ingredient we need to relate the two sequent calculi is a mechanism
for producing instantiations. We formalise a witness builder which maps every
constraint of Ψd;?X to a function, which outputs an “appropriate” instantiation
for ?X when given as input an instantiation of domain d:

Definition 6 (Witness). A witness builder for a compatibility relation ε is a
(family of) function(s) that maps every σ ∈ Ψd;?X to fσ ∈ Σd → Td, for every
domain d and every meta-variable ?X, and that satisfies Axiom Wit of Fig. 4.

Example 7. For the constraint structure of Example 5.1, we can define: ρεσ if
ρ is a (ground) instance of substitution σ. Given σ ∈ Ψd;?X and ρεσ↓, we have
ρ = ρ′ ◦ σ↓, and we can take fσ(ρ) to be any instance of ρ′(σ(?X)) in Σd.

In the particular case of Example 5.2, ρεσ if ρ coincides with σ (on every
meta-variable not mapped to itself by σ). To define fσ(ρ), note that ρ′(σ(?X))
is either ground or it is ?X itself (in which case any term in Σd works as fσ(ρ)).

For the constraint structure of Example 5.3, we can take: ρεF if the ground
formula ρ(F ) is valid in the theory. From a formula F ∈ Ψd;?X and an instan-
tiation ρ, the term fF (ρ) should represent an existential witness for the for-
mula ρ(F ), which features ?X as the only meta-variable. In the general case, we
might need to resort to a Hilbert-style choice operator to construct the witness:
ε(∃x((ρ,?X 7→x)(F )). For instance in the case of linear arithmetic, ρ(F ) corres-
ponds to a disjunction of systems of linear constraints, involving ?X and the
eigenvariables −→y of d. Expressing how ?X functionally depends on −→y to build a
solution of one of the systems, may require extending the syntax of terms. But
note that proof search in LK?

1 does not require implementing a witness builder.
A meet constraint structure can also be defined by taking constraints to be

(theory-specific kinds of) sets of instantiations: the compatibility relation ε is just
set membership, set intersection provides a meet operator and the projection of
a constraint is obtained by removing the appropriate entry in every instantiation
belonging to the constraint. Witness building would still be theory-specific.

To relate Systems LK?
1 and LK1, we relate constraint-producing predicates to

ground validity ones: intuitively, the instantiations that turn a set A of literals
of domain d into a valid set of (ground) literals should coincide with the in-
stantiations that are compatible with some constraint produced for A (a similar
condition appears in Theorem 55 of [5] with T -refuters instead of constraints):

Definition 7 (Relating predicates).
For a compatibility relation ε, we say that a constraint-producing predicate

(|=d)d relates to a ground validity predicate |= if they satify Axiom PG of Fig. 4.

A constraint-producing predicate may allow several constraints to close a
given leaf (finitely many for Example 1, possibly infinitely many for Examples 2
and 3, just one for Example 4). So in general our foreground reasoner expects
a stream of constraints to be produced at a leaf, corresponding to the (possibly
infinite) union in axiom PG: each one of them is sufficient to close the branch.
The first one is tried, and if it later proves unsuitable, the next one in the stream
can be tried, following Giese’s suggestion [8] of using streams of instantiations.
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4.3 Soundness and Completeness

System LK?
1 can be proved equivalent to System LK1, from the axioms in the

top half of Fig. 4 [13]. To state this equivalence, assume that we have a compat-
ibility relation that distributes over ∧, equipped with a witness builder, plus a
constraint-producing predicate (|=d)d related to a ground validity predicate |=.

Theorem 1 (Soundness and completeness of LK?
1).

For all contexts Γ of domain d:
If `d Γ � σ is derivable in LK?

1, then for all ρεσ, ` ρ(Γ ) is derivable in LK1.
For all ρ ∈ Σd, if ` ρ(Γ ) is derivable in LK1, then there exists σ ∈ Ψd such

that `d Γ � σ is derivable in LK?
1 and ρεσ.

We will usually start proof search with the domain d0, so as to build a proof
tree whose root is of the form `d0 Γ � σ for some constraint σ ∈ Ψd0 . Since the
only instantiation in Σd0 is ∅, and since ∅(Γ ) = Γ , soundness and completeness
for domain d0 can be rewritten as follows:

Corollary 1 (Soundness and completeness for the initial domain).
There exists σ ∈ Ψd0 such that `d0 Γ � σ is derivable in LK?

1 and ∅εσ,
if and only if ` Γ is derivable in LK1.

5 Sequentialising

The soundness and completeness properties of System LK?
1 rely on constraints

that are satisfiable. A proof-search process based on it should therefore not pro-
ceed any further with a constraint that has become unsatisfiable. Since the meet
of two satisfiable constraints may be unsatisfiable, branching on conjunctions
may take advantage of a sequential treatment: a constraint produced to close one
branch may direct the exploration of the other branch, which may be more effi-
cient than waiting until both branches have independently produced constraints
and only then checking that their meet is satisfiable. This section develops a
variant of System LK?

1 to support this sequentialisation of branches, much closer
than System LK?

1 to the free variable tableaux with theory reasoning [5].
In the rest of this section (Ψd)d is a fixed lift constraint structure.

5.1 Definition of the Proof System

Thus, the proof rules enrich a sequent with two constraints: the input one and
the output one, the latter being “stronger” than the former, in a sense that we
will make precise when we relate the different systems. At the leaves, a new
predicate (|=〉d)d is used that now takes an extra argument: the input constraint.

Definition 8 (LK?〉
1 sequent calculus).

A constraint-refining predicate is a family of relations (|=〉d)d, indexed by
domains d, relating sets A of literals of domain d with pairs of constraints σ and
σ′ in Ψd; when it holds, we write σ �|=〉dA � σ′.



10

Given such a predicate (|=〉d)d, the constraint-refining sequent calculus, de-
noted LK?〉

1 , manipulates sequents of the form σ �`d Γ � σ′, where Γ is a context
and σ and σ′ are constraints, all of domain d. Its rules are presented in Fig. 3.

σ �|=〉dΓlit � σ′

σ �`d Γ � σ′
σ �`d Γ,A,B � σ′

σ �`d Γ,A ∨B � σ′

σ �`d Γ,Ai � σ′′ σ′′ �`d Γ,A1−i � σ′

i ∈ {0, 1}
σ �`d Γ,A0 ∧A1 � σ′

σ↑ �`d;?X Γ,A [x :=?X] ,∃xA � σ′

σ �`d Γ,∃xA � σ′↓
where ?X is a fresh meta-variable

σ �`d;x Γ,A [x := x] � σ′

σ �`d Γ,∀xA � σ′

where x is a fresh eigenvariable

Figure 3. The sequent calculus with sequential delayed instantiation LK?〉
1

The branching rule introducing conjunctions allows an arbitrary sequential-
isation of the branches when building a proof tree, proving A0 first if i = 0, or
proving A1 first if i = 1.
Example 8. In Examples 1, 2, 3, constraints are simply substitutions, and the
constraint-refining predicate σ �|=〉dA � σ′ is taken to hold if the constraint-
producing predicate |=d σ(A) � σ′ (as given in Example 6) holds. Here we
recover the standard behaviour of free variable tableaux (with or without the-
ory [5]) where the substitutions used to close branches are applied to the literals
on the remaining branches. Of course in both cases, an implementation may
apply the substitution lazily. In Example 4, the constraint-refining predicate
σ �|=〉dA � σ′ is taken to hold if |=d (σ ∧ A) � σ′ holds. Proof search in LK?〉

1
builds, for our specific example and a trivially true constraint σ0, the proof-tree

σ0 �`d p(?X, ?Y ), p(?X ′, ?Y ′) � σ′1 σ′1 �`d l(?X, ?Y ), p(?X ′, ?Y ′) � σ′2
σ′2 �`d p(?X, ?Y ), l′(?X ′, ?Y ′) � σ′3 σ′3 �`d l(?X, ?Y ), l′(?X ′, ?Y ′) � σ′

. . .

σ0 �`d (p(?X, ?Y ) ∧ l(?X, ?Y )), (p(?X ′, ?Y ′) ∧ l′(?X ′, ?Y ′)) � σ′

. . .

σ0 �`d0 (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))) � σ′↓↓↓↓
similar to that of Example 6, where σ′

1 := σ1, σ′
2 := σ′

1 ∧σ2, σ′
3 := σ′

2 ∧σ3 and
σ′ := σ′

3, projected by quantifier elimination to the trivially true formula σ′
↓↓↓↓.

5.2 Soundness and Completeness

We now relate system LK?〉
1 to system LK?

1. For this we need some axioms about
the notions used in each of the two systems. These are distinct from the axioms
that we used to relate system LK?

1 to LK1, since we are not (yet) trying to relate
system LK?〉

1 to LK1. In the next section however, we will combine the two steps.
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Definition 9 (Decency). When 6 (resp. ∧, P ) is a family of pre-orders
(resp. binary operators, predicates) over each Ψd, we say that (6,∧, P ) is de-
cent if the following axioms hold:
D1 ∀σ, σ′ ∈ Ψd, σ ∧ σ′ is a greatest lower bound of σ and σ′ for 6
D2 ∀σ ∈ Ψd ∀σ′, σ′′ ∈ Ψd;?X , σ

′′ ' σ↑∧σ′ ⇒ σ′′
↓ ' σ∧σ′

↓

P1 ∀σ ∈ Ψd;?X , P (σ)⇔ P (σ↓) P2 ∀σ, σ′ ∈ Ψd,
{
P (σ)
σ 6 σ′ ⇒ P (σ′)

where ' denotes the equivalence relation generated by 6.

Notice that this makes (Ψd/',∧) a meet-semilattice that could equally be
defined by the associativity, commutativity, and idempotency of∧.

Definition 10 (Relating constraint-producing/refining predicates).
Given a family of binary operators∧and a family of predicates P , we say that

a constraint-refining predicate (|=〉d)d relates to a constraint-producing predicate
(|=d)d if, for all domains d, all sets A of literals of domain d and all σ ∈ Ψd,

A1 ∀σ′ ∈ Ψd, σ �|=〉dA � σ′ ⇒ ∃σ′′ ∈ Ψd,

σ′ ' σ∧σ′′

P (σ∧σ′′)
|=dA � σ′′

A2 ∀σ′ ∈ Ψd,
{
P (σ∧σ′)
|=dA � σ′ ⇒ ∃σ′′ ∈ Ψd,

{
σ′′ ' σ∧σ′

σ �|=〉dA � σ′′

In the rest of this sub-section, we assume that we have a decent triple (6
,∧, P ), and a constraint-refining predicate (|=〉d)d that relates to a contraint-
producing predicate (|=d)d. In this paper we only use two predicates P , allowing
us to develop two variants of each theorem, with a compact presentation: P (σ)
is always “true”, and P (σ) is “σ is satisfiable”, both of which satisfy P1 and P2.

System LK?〉
1 can then be proved sound with respect to System LK?

1 [13]:
Theorem 2 (Soundness of LK?〉

1 ).
If σ �`d Γ � σ′ is derivable in LK?〉

1 , then there exists σ′′ ∈ Ψd such that
σ′ ' σ∧σ′′, P (σ ∧ σ′′) and `d Γ � σ′′ is derivable in LK?

1.

Notice that the statement for soundness of Theorem 2 is merely a general-
isation of axiom R2P where the reference to |=d and |=〉d have respectively been
replaced by derivability in LK?

1 and LK?〉
1 .

A natural statement for completeness of LK?〉
1 w.r.t. LK?

1 comes as the sym-
metric generalisation of axiom P2R:

Theorem 3 (Weak completeness of LK?〉
1 ). If `d Γ � σ′ is derivable in LK?

1,
then for all σ ∈ Ψd such that P (σ∧σ′), there exists σ′′ ∈ Ψd such that σ′′ ' σ∧σ′

and σ �`d Γ � σ′′ is derivable in LK?〉
1 .

This statement can be proved, but it fails to capture an important aspect of
system LK?〉

1 : the order in which proof search treats branches should not mat-
ter for completeness. But the above statement concludes that there exists a
sequentialisation of branches that leads to a complete proof tree in LK?〉

1 , so the
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proof-search procedure should either guess it or investigate all possibilities. We
therefore proved [13] the stronger statement of completeness (below) whereby,
for all possible sequentialisations of branches, there exists a complete proof tree.
Therefore, when the proof-search procedure decides to apply the branching rule,
choosing which branch to complete first can be treated as “don’t care non-
determinism” rather than “don’t know non-determinism”: if a particular choice
proves unsuccessful, there should be no need to explore the alternative choice.

Theorem 4 (Strong completeness of LK?〉
1 ).

If `d Γ � σ′ is derivable in LK?
1, then for all σ ∈ Ψd such that P (σ∧σ′), and

for all sequentialisations r of branches, there exists σ′′ ∈ Ψd such that σ′′ ' σ∧σ′

and σ �`d Γ � σ′′ is derivable in LK?〉
1 with a proof tree that follows r.

6 Relating LK?〉
1 to LK1

Now we combine the two steps: from LK1 to LK?
1 and from LK?

1 to LK?〉
1 , so as to

relate LK?〉
1 to LK1. For this we aggregate (and consequently simplify) the axioms

that we used for the first step with those that we used for the second step.

Definition 11 (Compatibility-based pre-order). Assume we have a fam-
ily of compatibility relations ε for a constraint structure (Ψd)d. We define the
following pre-order on each Ψd:

∀σ, σ′ ∈ Ψd, σ 6ε σ
′ ⇔ {ρ ∈ Σd | ρεσ} ⊆ {ρ ∈ Σd | ρεσ′}

and let 'ε denote the symmetric closure of 6ε.

We now assume that we have a lift constraint structure and a constraint-
refining predicate (|=〉d)d used to define LK?〉

1 , and the existence of
– a binary operator∧
– a compatibility relation ε that distributes over∧ (Proj and Meet in Fig. 4)
– a binding operator for ε (Wit in Fig. 4)
– a constraint-producing predicate (|=d)d that relates to |= (PG in Fig. 4)
– a predicate P

satisfying the axioms of Fig. 4. These entail decency [13]:
Lemma 1. Given the axioms of Fig. 4, (6ε,∧, P ) is decent.

Hence, we have soundness and completeness of LK?〉
1 w.r.t. LK1 on the empty

domain, as a straightforward consequence of Corollary 1 and Theorems 2 and 4:

Theorem 5 (Soundness and completeness on the empty domain).
If σ �`d0 Γ � σ′ is derivable in LK?〉

1 and ∅εσ′, then ` Γ is derivable in
LK1. In particular when P is the predicate “being satisfiable”, if σ �`d0 Γ � σ′

is derivable in LK?〉
1 , then ` Γ is derivable in LK1.

Assume P is always true or is “being satisfiable”. If ` Γ is derivable in LK1,
then for all σ ∈ Ψd0 such that ∅εσ and for all sequentialisations r, there exists
σ′ ∈ Ψd0 such that ∅εσ′ and σ �`d0 Γ � σ′ is derivable in LK?〉

1 with a proof tree
that follows r.
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Remark 1 (Soundness of LK?〉
1 ). Soundness of LK?〉

1 on an arbitrary domain is a
direct consequence of Theorem 1 and Theorem 2: If σ �`d Γ � σ′ is derivable
in LK?〉

1 , then P (σ′) holds and for all ρεσ′, ` ρ(Γ ) is derivable in LK1. For the
sake of brevity, we omit the general statement of completeness on an arbitrary
domain, which is quite long to write.

As we shall see in Sect. 7, it is useful to have a “top element” > in Ψd0 with
∅ε>, which we feed to a proof-search procedure based on LK?〉

1 , as the initial
input constraint σ mentioned in the soundness and completeness theorems.

Proj ∀σ ∈ Ψd;?X , ∀t∀ρ, (ρ,?X 7→t) εσ ⇒ ρεσ↓
Wit ∀σ ∈ Ψd;?X , ∀ρ, ρεσ↓ ⇒ (ρ,?X 7→fσ (ρ)) εσ

Meet ∀σσ′ ∈ Ψd, ∀ρ,
{
ρεσ
ρεσ′

⇔ ρε (σ∧σ′)

PG ∀l,∀A, {ρ | |=ρ (A)} =
⋃

{σ| |=lA�σ}
{ρ | ρεσ}

Lift ∀σ ∈ Ψd, ∀σ′ ∈ Ψd;?X , ∀ρ, (ρ,?X 7→fσ′ (ρ))εσ↑ ⇔ ρεσ
P1 ∀σ ∈ Ψd;?X , P (σ) ⇔ P (σ↓)

P2 ∀σσ′ ∈ Ψd,

{
P (σ)
σ 6ε σ

′ ⇒ P (σ′)

R2P ∀d, ∀A, ∀σ, σ′ ∈ Ψd, σ �|=〉dA � σ′ ⇒ ∃σ′′ ∈ Ψd,

{
σ′ 'ε σ∧σ′′
P (σ∧σ′′)
|=dA � σ′′

P2R ∀d,∀A, ∀σ, σ′ ∈ Ψd,

{
P (σ∧σ′)
|=dA � σ′

⇒ ∃σ′′ ∈ Ψd,

{
σ′′ 'ε σ∧σ′
σ �|=〉dA � σ′′

Figure 4. Full Axiomatisation

7 Implementation

Psyche is a platform for proof search, where a kernel offers an API for program-
ming various search strategies as plugins, while guaranteeing the correctness of
the search output [10]. Its architecture extensively uses OCaml’s system of

module type Theory = sig
module Constraint: sig

type t
val topconstraint:t
val proj : t -> t
val lift : t -> t
val meet : t -> t -> t option
...

end
val consistency :
ASet.t -> (ASet.t,Constraint.t) stream

end

Theory component signature in Psyche 2.0

modules and functors. In order to
modularly support theory-specific
reasoning (in presence of quan-
tifiers), the axiomatisation pro-
posed in the previous sections
was used to identify the signa-
ture and the specifications of the-
ory components. In version 2.0
of Psyche [12], the kernel im-
plements (the focused version of)
System LK?〉

1 , and a theory com-
ponent is required to provide the
implementation of the concepts
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developed in the previous sections, as shown in the module type above. It
provides a lift constraint structure in the form of a module Constraint, with
a type for constraints, the projection and lift maps, as well as a top constraint
(always satisfied) with which proof search will start. We also require a meet op-
eration: While the theory of complete proofs in LK?〉

1 does not need it, the meet
operation is useful when implementing a backtracking proof-search procedure:
imagine a proof tree has been completed for some sequent S, with input con-
straint σ0 and output constraint σ1; at some point the procedure may have to
search again for a proof of S but with a different input constraint σ′

0. We can
check whether the first proof can be re-used by simply checking whether σ′

0 ∧σ1
is satisfiable. The meet function should output None if the meet of the two input
constraints is not satisfiable, and Some sigma if the satisfiable meet is sigma.

Finally, the function that is called at the leaves of proof trees is consistency,
which implements the constraint-refining predicate; ASet.t is the type for sets
of literals with meta-variables and the function returns a stream: providing an
input constraint triggers computation and pops the next element of the stream
if it exists. It is a pair made of an output constraint and a subset of the input
set of literals. The latter indicates which literals of the input have been used to
close the branch, which is useful information for lemma learning (see e.g. [10]).

While our axiomatisation immediately yields the specification for theory com-
ponents, it does not provide instances and so far, the only (non-ground) instance
implemented in Psyche is that of pure first-order logic (based on unification).

8 Related Works and Further Work

The sequent calculi developed in this paper for theory reasoning in presence of
quantifiers, are akin to the free variable tableaux of [5] for total theory reasoning.
But they use abstract constraints, instead of substitutions, and our foreground
reasoner is able to propagate them across branches while being ignorant of their
nature. This allows new theories to be treated by the framework, such as those
satisfying quantifier elimination, like linear arithmetic. In this particular case,
the asymmetric treatment of LK?〉

1 formalises an improvement, in the view of an
effective implementation, over System PresPredCS [14] for LIA. A novel point of
our paper is to show that the propagation of substitutions in tableaux and the
propagation of linear arithmetic constraints follow the same pattern, by describ-
ing them as two instances of an abstract constraint propagation mechanism.

Constraints have been integrated to various tableaux calculi: In the nomen-
clature proposed in Giese and Hähnle’s survey [9], our approach is closest to
constrained formula tableaux or constrained branch tableaux which propagate
constraints between branches (rather than constrained tableaux which have a
global management of constraints). But the tableaux calculi cited by [9] in these
categories are for specific theories and logics (pure classical logic, equality, linear
temporal logic or bunched implications), in contrast to our generic approach.

When classes of theories are generically integrated to automated reasoning
with the use of constraints, as for the Model Evolution Calculus [3], these are
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usually described as first-order formulae over a particular theory’s signature (as
it is the case in [1,14] for LIA). Our abstract data-structures for constraints could
be viewed as the semantic counter-part of such a syntactic representation, whose
atomic construction steps are costless but which may incur expensive satisfiab-
ility checks by the background reasoner. Our semantic view of constraints, as
shown in Section 7, more directly supports theory-tuned implementations where
e.g. the meet and projection operations involve computation. Our specifications
for theory-specific computation also seems less demanding than deciding the
satisfiability of any constraint made of atoms (over the theory’s signature), con-
junction, negation, and existential quantification [3].

The semantic approach to constraints was explored by a rich literature in
(Concurrent) Constraint Programming [15], but the applicability of constraint
systems to programming usually leads to more demanding axioms as well (re-
quiring e.g. complete lattices) and to a global management of constraints (with a
global store that is reminiscent of constrained tableaux). Our local management
of constraints allows for more subtle backtracking strategies in proof search, un-
doing some steps in one branch while sticking to some more recent decisions that
have been made in a different branch.

In the case of ground theory reasoning, the field of SMT-solving has evolved
powerful techniques for combining theories (see e.g. the unifying approach of [7]).
A natural question is whether similar techniques can be developed in presence
of quantifiers, combining constraint-producing or constraint-refining procedures.
We did not provide such techniques here, but we believe our modular and ab-
stract approach could be a first step towards that end, with our axiomatisation
identifying what properties should be sought when engineering such techniques,
i.e. serving as a correctness criterion.

Finally, SMT-solvers usually adopt a heuristic approach for handling quanti-
fiers, often involving incomplete mechanisms, with slimmer theoretical founda-
tions than for their ground reasoning core. A notable exception is a formalisation
of triggers mechanisms by Dross et al. [6], which we hope to view as particular
instances of our constraint systems. Moreover, the way in which triggers con-
trol the breaking of quantifiers appears as the kind of structured proof-search
mechanisms that Psyche can specify (based on focusing).
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