
Automatic re�nements in Coq

Internship report

Damien Rouhling

January - June 2016

Abstract

This report is the result of my internship in the Marelle team at INRIA Méditerranée
Sophia Antipolis, in France, for the validation of my second year of masters in computer
science. It is about the (re-)development of CoqEAL, a library for e�ective algebra in
the proof-assistant Coq. This library exploits the concept of re�nement to reintroduce
computation in proofs. During this internship, I implemented in CoqEAL a better use
of parametricity in order to automatize the re�nement process.

Contents

Introduction 2

1 Context 2

1.1 On proofs and computation . 3
1.2 Re�nement methodology . 3
1.3 Example . 4

2 The role of parametricity 6

2.1 The parametricity theorem . 6
2.2 Data re�nements as �free theorems� . 7
2.3 On partial re�nements . 8

3 Implementation 9

3.1 Type classes . 9
3.2 Re�nement inference . 10
3.3 Switching representations . 11
3.4 Optimization . 12
3.5 Re�nement of functions . 13

4 Applications 14

4.1 Proofs by computation . 14
4.2 The tactic ring . 16

Conclusion 18

References 19

1

Internship report

Introduction

I did my second year of masters' internship under the supervision of Cyril Cohen,
in the Marelle team at INRIA Méditerranée Sophia Antipolis, in France. I worked on
CoqEAL ([DMS12]), a library for e�ective algebra in the proof-assistant Coq ([dt16]).

There are two main approaches to computer-aided reasoning: proof search and proof
veri�cation. Proof-assistants fall into the second category, even if nowadays most proof-
assistants embed automatic procedures that help the user to build proofs, thus making
some features of the �rst category available. They are interactive tools that allow the user
to give the steps of a proof and that automatize the veri�cation of their validity.

One of the interests of proof-assistant is thus to make proofs more reliable through sys-
tematic checking. In the particular case of mathematics, one goal of the Mathematical
Components project is to provide a library of mathematical results that are e�ciently
reusable in the proof-assistant Coq, with a good trade-o� between abstraction and ease
of use. This project and the extension of Coq's tactic language, SSReflect ([GMT15]),
have shown their success through the proofs of the Four Colour Theorem ([Gon08]) and
of the Odd Order Theorem ([GAA+13]).

CoqEAL is built on top of the Mathematical Components library. It contains
algebraic results and provides a framework for changing the representation of objects in
the middle of proofs. This has the interest of allowing to perform e�cient computations to
ease some proofs. For this purpose, CoqEAL comes with certi�ed optimized algorithms.
To prove the correctness of those algorithms on the data structures de�ned in the library,
three steps are used: write the algorithm with the data structure as a parameter (this
is called generic programming), prove its correctness on a �proof-oriented� data structure
such as those of the Mathematical Components library and �nally transport the
proof to any other (usually �computation-oriented�) data structure satisfying the same
interface/properties.

The last step is realised through data re�nement. �Re�nement� is a term usually
used to describe a step by step approach in the veri�cation of a program. The program
and its speci�cation are �rst speci�ed using high-level languages and then the program is
re�ned to more low-level structures, �nally reaching an actual implementation. Each step
is proven correct with respect to the previous one. What we mean by data re�nement
here is only a veri�ed step for changing the representation of some data type.

Data re�nement has a strong connection with Reynolds' abstraction theorem ([Rey84]).
This result allows us to get �free theorems� ([Wad89]) that, in our case, help to automatize
the third step. The goal of my internship was to exploit this link in order to (re-)develop
CoqEAL 1. We give further details on the context of this internship in Section 1 before
explaining in Section 2 how Reynolds' result can be of practical use in our case. Section 3
gathers technical details on the re�nement process. Finally, we show applications of this
work in Section 4.

1 Context

CoqEAL is a library which contains e�cient data structures and optimized algo-
rithms. One of its use is to perform e�cient computations in the middle of proofs to
simplify the property that has to be proven. For this, there is a mechanism for changing
the representation of the manipulated objects, namely re�nement. We �rst discuss the
reasons for this mechanism. Then, we present the methodology of re�nement and �nally
we illustrate it on an example.

1https://github.com/CoqEAL/CoqEAL/tree/paramcoq-dev

ENS Lyon 2 Damien Rouhling

https://github.com/CoqEAL/CoqEAL/tree/paramcoq-dev

Automatic re�nements in Coq

1.1 On proofs and computation

Coq is a proof-assistant based on the Calculus of Inductive Constructions ([CH88],
[CPM90]). It exploits the correspondence between lambda calculus and logic, also known
as the Curry-Howard correspondence: properties are interpreted as types and proofs as
lambda terms. In Coq, to prove a property the user has to build a term inhabiting the
corresponding type. The role of Coq is to check that the constructed term is well-formed
and has indeed the desired type.

In Coq, the user focuses on the property (the type) (s)he wants to prove. For this,
(s)he can use tactics (i.e. routines building part of the structure of the proof term) to
transform it, to break it into smaller part, to reduce it to other properties, etc. Thus, it is
not necessary to manipulate big unreadable proof terms. On top of this, lambda calculus
has a computational model. Hence, terms are valuable, for they also are programs one
might want to execute. Coq allows the user to print the terms but has also an extraction
mechanism to get code from functions or existence proofs. This makes Coq a powerful
tool for program certi�cation: the user can either write a function in Coq and prove
it correct by working on a speci�cation theorem, or directly work on a proof that there
exists a term which satis�es a given speci�cation. Finally, (s)he can extract a functional
program out of this work.

However, proving that a program is correct can be hard, especially if it involves com-
plex optimizations on specialized data structures. Dijkstra ([Dij82]) argued for studying
both aspects, correctness and e�ciency, separately:

We know that a program must be correct and we can study it from that
viewpoint only; we also know that it should be e�cient and we can study
its e�ciency on another day, so to speak. [...] But nothing is gained � on
the contrary! � by tackling these various aspects simultaneously. It is what I
sometimes have called "the separation of concerns", [...].

In CoqEAL, we achieve this concretely by proving the correctness of an algorithm
on �proof-oriented� data structures and by transporting the proof to more �computation-
oriented� data structures. This second step is achieved through re�nement ([DMS12]).

This separation between proofs and computation is reinforced in the Mathematical
Components library, where the data structures are well-�tted for proofs but not for
computation. Indeed, some of them are locked in order to block computation and thus to
make type-checking more e�cient on complex structures. Nevertheless, it is sometimes
interesting to perform computation in order to simplify the property to be proven. Even
if it is possible to do so by rewriting equalities, it is extremely tedious and can be really
ine�cient, for instance if you have to unfold a determinant using its de�nition instead
of an optimized algorithm. Theoretically, one could tune the system to remove locks
in order to perform computations, but still the data structures and algorithms are not
optimized for computation, hence ine�cient. Thus, it could be interesting during a proof
to alternate between �proof-oriented� and �computation-oriented� representations of the
objects (data re�nement) and/or functions (program re�nement).

1.2 Re�nement methodology

Program re�nement consists in replacing an algorithm with a di�erent one that com-
putes more e�ciently the same thing. For instance, to compute a determinant it is better
to use Bareiss' algorithm ([Bar68]) instead of the formula that de�nes it. No change in
the data structures is involved and the correctness of such re�nement often amounts to
proving that the two algorithms are extensionally equal. Two programs P and P ′ are ex-
tensionally equal if for all input x the outputs P (x) and P ′ (x) are equal. In Coq, proving

ENS Lyon 3 Damien Rouhling

Internship report

such a theorem allows you to rewrite every instance of the pattern P (x) as P ′ (x), and
conversely.

Data re�nement, however, is more complex. It involves putting in correspondence the
base objects of two di�erent data representations (e.g. the null polynomial of the Math-
ematical Components library with the empty sequence, if you represent polynomials
as the sequences of their coe�cients) as well as the basic operations on them (e.g. the
sum of two polynomials should correspond to the pointwise sum of the two sequences that
represent them). It should be possible to compose multiple re�nements. For instance, re-
�nements from dense to sparse polynomials and from unary to binary integers should give
�for free� a re�nement from dense polynomials over unary integers to sparse polynomials
over binary integers.

The methodology used in CoqEAL for data re�nement is the following ([CDM13]):

1. parametrize an algorithm by the data it manipulates using an abstract type and
abstract basic operations,

2. prove the correctness of the algorithm when it is instantiated on a �proof-oriented�
representation of the data,

3. use the parametricity of the algorithm to deduce the correctness of the algorithm
when it is instantiated on a corresponding �computation-oriented� representation of
the data.

Remark that this methodology also applies to data structures, instead of algorithms.
This is how one can compose re�nements: for instance, in the case of polynomials seen
as sequences, we parametrize the base objects/operations by the representation of the
coe�cients.

This approach is similar to the one that is used in the Isabelle/HOL code genera-
tor ([Lam13]). However, in Isabelle/HOL, the goal is to generate executable versions of
abstract programs, whereas Coq programs are already executable thanks to the extrac-
tion mechanism, so that we only use re�nement to perform computations more e�ciently.
The approach in Isabelle/HOL goes from abstract objects to concrete ones and is called
pure data re�nement. In CoqEAL, re�nement is performed either on instantiations of
an abstract program or on concrete structures, so that we never leave the concrete world.

1.3 Example

We illustrate this methodology on the example of rational numbers, taken from the
paper of Cohen, Dénès and Mörtberg ([CDM13]). The actual re�nement of rational
numbers in CoqEAL is a bit more complex but we stick to the simpler version for a
better understanding. In the Mathematical Components library, rational numbers
are represented as a record containing a pair of integers and a proof that they are coprime
and that the second one is positive:

Record rat : Set := Rat {

valq : int * int ;

_ : (0 < valq.2) && coprime `|valq.1| `|valq.2|

}.

A �rst step toward a �computation-oriented� version of rational numbers is to remove
the proofs and to keep only the pair of integers. Another possible optimization is to avoid
computing the coprime representation of the number at each operation (still, one has to
be careful with the size of the involved integers). Furthermore, since the type int of
integers in the Mathematical Components library is �proof-oriented� we can compose
this re�nement with a re�nement of integers. This leads to the following de�nition of
addition on rational numbers, where the type Z is meant to represent integers:

ENS Lyon 4 Damien Rouhling

Automatic re�nements in Coq

Definition addQ Z +Z *Z : Z * Z -> Z * Z -> Z * Z :=

fun x y => (x.1 *Z y.2 +Z y.1 *Z x.2, x.2 *Z y.2).

The next step is to prove that this addition is correct when the argument Z is instan-
tiated with int. For this, we use a relation

Rrat : rat -> int * int -> Type

that expresses the fact that an object of type rat and a pair of int objects represent
the same rational number. We want to show that addition preserves in some sense this
relation. To achieve this, we transport Rrat to the level of functions: given two relations

R : A -> B -> Type,

R' : A' -> B' -> Type,

it is possible to build a functional relation

R ==> R' : (A -> A') -> (B -> B') -> Type

so that two functions are related if they send related inputs to related outputs. This is
a heterogeneous generalization of the respectful function de�ned for generalized rewrit-
ing ([Soz09]). Using this construction and the relation Rrat, we can express the correctness
of addQ as follows:

Lemma Rrat_addQ : (Rrat ==> Rrat ==> Rrat) +rat (addQ int +int *int).

The �nal step is to compose this result with a re�nement of the type int, thus prov-
ing the correctness of addQ on a fully �computation-oriented� representation of rational
numbers. Assume given a �computation-oriented� version C of int, a relation

Rint : int -> C -> Type

and the correctness theorems for addition and multiplication:

Lemma Rint_add : (Rint ==> Rint ==> Rint) +int +C,

Lemma Rint_mul : (Rint ==> Rint ==> Rint) *int *C.

We can then de�ne the relation RratC : rat -> C * C -> Type as

Definition RratC := Rrat o (Rint * Rint),

where o is relation composition, and R * R' denotes the product of the two relations
R and R'. As we will see, this is this composition that allows us to use the parametricity
of addQ in order to prove its correctness (in fact, it is not speci�c to this example). The
goal is to prove the following theorem:

Lemma RratC_add : (RratC ==> RratC ==> RratC) +rat (addQ C +C *C).

Because of the composition in the de�nition of RratC, this goal splits into:

(Rrat ==> Rrat ==> Rrat) +rat (addQ int +int *int)

and

(Rint * Rint ==> Rint * Rint ==> Rint * Rint)

(addQ int +int *int) (addQ C +C *C).

The �rst goal is exactly the statement of the correctness theorem Rrat_addQ, and
the proof of the second one can be automatized using parametricity and the correctness
theorems for addition and multiplication Rint_add and Rint_mul. A goal of my internship
was to realize this automation.

ENS Lyon 5 Damien Rouhling

Internship report

2 The role of parametricity

Parametricity ([Wad89]) is a reformulation of Reynolds' abstraction theorem ([Rey83]).
It is based on the idea that all inhabitants of a (closed) type share a property expressed
by its relational interpretation. We �rst describe this interpretation and state the para-
metricity theorem. Then we show how it can be used in CoqEAL.

2.1 The parametricity theorem

Reynolds introduced a relational interpretation of types in a work about polymor-
phism ([Rey83]). It is expressed in terms of a set-theoretic model of the polymorphic
lambda calculus that in fact does not exist ([Rey84]). However, Wadler transposed it to
another context ([Wad89]), where models actually exist. For the sake of simplicity, we
stick to the set-theoretic view to give the intuition of the abstraction theorem.

For each type A, we denote by JAK its interpretation as a relation. For instance, the
constant type for integers int can be interpreted as the diagonal ∆int = {(x, x) | x ∈ int}.
For function types, we use the same idea as in Subsection 1.3 to de�ne a functional
relation: two functions are related if they send related inputs to related outputs. Keeping
our notations, this gives JA→ BK = JAK ==> JBK. The most important case is the one
of the polymorphic type ∀X.A. Since X is a type variable, the interpretation of A will
depend on a relation, which corresponds to the interpretation of X. Thus, two functions
f and g are related by J∀X.AK, denoted by J∀X.AK f g, if for all relation R between some
sets (types) S and T , fS and gT are related by JAK {R/ JXK}, where fS is the instantiation
of f for the type A {S/X}. Thus, any closed type A can be seen as a relation JAK on
itself. Parametricity for A can then be expressed as follows: for all closed term t of type
A, JAK t t.

In a less naive context, terms also need to be interpreted and parametricity also holds
for terms and types that contain free variables, so long as these variables respect the
relations corresponding to their types. However, in CoqEAL we use parametricity only
on closed terms so we will not express the theorem in its full generality. If we denote by
` t : A the typing judgement �the term t is of type A�, we can state parametricity as
follows:

Theorem 1 (Parametricity). For all closed type A and closed term t, if ` t : A, then
` JtK : JAK t t.

Let us look at an example of �free theorem� derived from parametricity, taken from
the paper of Wadler ([Wad89]). Consider any polymorphic function f over sequences:
the type of f is ∀X.seq X → seq X. The type variable X represents here the type
of the coe�cients of the sequence. Since f works on any sequence, no matter what
the type of the coe�cients is, f cannot use any type-speci�c operation: its e�ect must
be independent of the values of the coe�cients, hence f must rearrange the sequence,
possibly deleting some coe�cients depending only on their position in the sequence. By
parametricity we know that (f, f) ∈ J∀X.seq X → seq XK. Unfolding the de�nitions, we
get that for all relation R between some A and A′, for all (l, l′) ∈ Jseq XK {R/ JXK}, we
have (fA l, fA′ l′) ∈ Jseq XK {R/ JXK}. Using any function g from A to A′ for R, we get
that for all sequences l and l′, if map g l = l′, then map g (fA l) = fA′ l′. To sum up, any
polymorphic function over sequences commutes with the mapping of any function. Seeing
such functions as rearrangements, this �free theorem� is not quite a revolution. However,
it has proven useful in CoqEAL for one of our re�nements, as well as many other such
�free theorems�.

ENS Lyon 6 Damien Rouhling

Automatic re�nements in Coq

2.2 Data re�nements as �free theorems�

Using relations to express the correctness of a data re�nement, as in Subsection 1.3,
puts us in a framework that is really close to the one of parametricity. Indeed, we have
seen in Subsection 2.1 that the interpretations of polymorphic types are quanti�ed over
some relations. By instantiating those relations by ours, we can get �for free� parts of the
correctness theorems we try to prove.

Reynolds' result is stated for a simple calculus, but it can be extended to more com-
plex systems. To do so, it is su�cient to give an interpretation to the supplementary
type constructors, and to prove that the new constants satisfy the interpretation of their
types. This has been done for the Calculus of Inductive Constructions by Keller and
Lasson ([KL12]), thus making parametricity usable in our context.

Recall the methodology for data re�nement we presented in Subsection 1.2 and con-
sider again the example of rational numbers, seen in Subsection 1.3. We �rst parametrized
our data structure by a type representing integers, thus obtaining the type ∀Z. Z * Z.
Then, we expressed the fact that this data structure represents the type rat and that
addQ is correct, when Z is instantiated by int, using the relation Rrat. Finally, we de-
�ned the relation RratC and expressed the fact that this is also correct to instantiate Z

by a re�nement C of int. In fact, RratC is the composition Rrat o JZ ∗ ZK {Rint/ JZK},
thus paving the way for the use of parametricity. Indeed, we know that JaddQK is a proof
of

J∀Z. (Z→ Z→ Z)→ (Z→ Z→ Z)→ Z ∗ Z→ Z ∗ Z→ Z ∗ ZK addQ addQ

which expands to

∀Z : Type. ∀Z′ : Type. ∀R : Z -> Z' -> Type.

∀addZ : Z -> Z -> Z. ∀addZ' : Z' -> Z' -> Z'.

JZ→ Z→ ZK {R/ JZK} addZ addZ' ->

∀mulZ : Z -> Z -> Z. ∀mulZ' : Z' -> Z' -> Z'.

JZ→ Z→ ZK {R/ JZK} mulZ mulZ' ->

JZ ∗ Z→ Z ∗ Z→ Z ∗ ZK {R/ JZK} (addQ Z addZ mulZ) (addQ Z' addZ' mulZ').

This, with our notations, simpli�es into

∀Z : Type. ∀Z' : Type. ∀R : Z -> Z' -> Type.

∀addZ : Z -> Z -> Z. ∀addZ' : Z' -> Z' -> Z'.

(R ==> R ==> R) addZ addZ' ->

∀mulZ : Z -> Z -> Z. ∀mulZ' : Z' -> Z' -> Z'.

(R ==> R ==> R) mulZ mulZ' ->

(R * R ==> R * R ==> R * R)

(addQ Z addZ mulZ) (addQ Z' addZ' mulZ').

Choosing int for Z, C for Z' and Rint for R (as in the de�nition of RratC), this becomes

∀addInt : int -> int -> int. ∀addC : C -> C -> C.

(Rint ==> Rint ==> Rint) addInt addC ->

∀mulInt : int -> int -> int. ∀mulC : C -> C -> C.

(Rint ==> Rint ==> Rint) mulInt mulC ->

(Rint * Rint ==> Rint * Rint ==> Rint * Rint)

(addQ int addInt mulInt) (addQ C addC mulC).

Finally, using the two theorems

Lemma Rint_add : (Rint ==> Rint ==> Rint) +int +C,

Lemma Rint_mul : (Rint ==> Rint ==> Rint) *int *C,

we have a proof of

ENS Lyon 7 Damien Rouhling

Internship report

(Rint * Rint ==> Rint * Rint ==> Rint * Rint)

(addQ int +int *int) (addQ C +C *C),

which is exactly the result that we were missing in Subsection 1.3.
Thus, the automation of data re�nement is only a matter of applying a �free theorem�

obtained from parametricity. What is more, Keller and Lasson have implemented Param-
Coq 2, a plugin for Coq that computes the interpretation of a term t and of its type A,
and that lets Coq's type checker verify that indeed JtK is a proof of JAK t t. This plugin is
the starting point of my work. First, I slightly adapted its code 3 to make it compile with
the latest version of Coq. Later on, I corrected its naming system with the possibility of
giving user-de�ned names to interpretations to avoid con�icts when declaring the inter-
pretation of two di�erent terms with the same name (but de�ned in di�erent modules).
What was left was proving re�nements using theorems generated by this plugin.

2.3 On partial re�nements

When several data types are involved, one might want to keep intact those that are
e�cient for computation and to re�ne the others. Currently, this is only possible through
the use of SSReflect's extended rewrite tactic ([GMT15]), by giving patterns for the
subterms that need to be re�ned (see Subsection 3.3 more details on re�nement by rewrit-
ing).

Sometimes, however, even the data types we want to re�ne embed other ones that we
want to keep intact. For instance, a natural way of representing matrices is by a type
depending on two natural numbers, the dimensions: an abstract representation would thus
be the type ∀n : N. ∀m : N. M n m, where N is meant to represent natural numbers and
M n m is the type of the matrices with n rows and m columns. In practice, one rarely needs
to compute on the dimensions. Hence, it is still reasonable to use the type nat for N and
to use re�nement only on M.

If abstract types (introduced through quanti�cation) are interpreted as quanti�cations
over relations, concrete types have their own speci�c and more concrete interpretation.
For example, we have seen the type constructor for pairs, and its interpretation as the
product relation of the interpretations of the types of its components. In the case of the
type nat, the ParamCoq plugin outputs the following interpretation:

Inductive nat_R : nat -> nat -> Set :=

nat_R_O_R : nat_R 0 0

| nat_R_S_R : forall n m : nat, nat_R n m -> nat_R n.+1 m.+1.

Here the notation .+1 corresponds to the successor function, and nat_R is Param-
Coq's notation for JnatK. This relation appears in the parametricity theorems involving
our type for matrices. Indeed, the quanti�cation ∀n : nat. ∀m : nat. ... is inter-
preted as

∀n1 : nat. ∀n2 : nat. JnatK n1 n2 ->

∀m1 : nat. ∀m2 : nat. JnatK m1 m2 -> ...

Consequently, in order to be able to use parametricity in re�nements of objects
parametrized by a representation of matrices, we need to prove re�nement theorems with
such quanti�cations. On the other hand, when using in practice re�nement on matrices,
it is su�cient to have theorems with the quanti�cation over the dimensions ∀n : nat.

∀m : nat. ..., since we want to keep them intact. The parametricity theorem ensures
that JnatK is re�exive, and it is easy to see that in fact nat_R corresponds to equality.
Hence, the theorems with the simpler quanti�cation are direct consequences of the more

2https://github.com/mlasson/paramcoq
3https://github.com/drouhling/paramcoq

ENS Lyon 8 Damien Rouhling

https://github.com/mlasson/paramcoq
https://github.com/drouhling/paramcoq

Automatic re�nements in Coq

general ones. But because of the re�nement inference mechanism (see Section 3), keeping
only the more general theorems would require declaring a re�nement of nat as nat using
the relation JnatK and re�exivity, which amounts to doing nothing when applying re�ne-
ment to natural numbers, not mentioning the con�icts it would create with our actual
re�nement of nat and the theorems already involving JnatK. . .

Instead, we have two instances of each theorem about matrices: the more general
version for further developments involving matrices, and a version instantiated with re-
�exivity for practical use. This makes development ine�cient but it has no consequence
on the running time when computing re�nement, whereas the other solution, using an ab-
stract type for natural numbers and our re�nement of nat into binary numbers, lengthens
inference. We still need to �nd an adapted framework for partial re�nements, which could
solve these issues.

3 Implementation

As mentioned in Subsection 1.1, one of the interests of re�nement is to switch repre-
sentations of objects to perform computation during a proof, thus simplifying the goal.
For this to be less tedious than rewriting equalities, it is essential to have a mechanism to
automatize the search of re�nements. There exist two mechanisms in Coq that make fea-
sible this automation: canonical structures ([MT13]) and type classes ([SO08]). Canonical
structures are at the heart of the Mathematical Components library. Type classes
were used to design CoqEAL. We �rst make a short introduction to the type class mech-
anism and explain the role of type classes in our context. Then, we present the di�erent
ways of switching representations of objects using this mechanism. Finally, we describe
how to tune inference in order to use the best structures available and we discuss the
particular case of the re�nement of functions.

3.1 Type classes

Type classes are speci�ed by adding constraints to one or several type variables. For
instance, one can declare the class of the types that admit an equality operator as follows:

Class eq_of A := eq_op : A -> A -> bool.

Here, eq_of is the name of the class and eq_op is the name of the operator. One
can then for each type that satis�es the constraints declare it as an instance of the class
by giving the term proving that indeed the constraints are ful�lled. For example, in the
case of eq_of, one can declare that natural numbers in binary representation admit an
equality operator through:

Instance eq_N : eq_of N := N.eqb.

Each declared instance of a type class is stored in a database of hints which guide type
class inference. Thus, whenever eq_op appears, Coq will try each entry in the database,
solving uni�cation and type constraints, until a correct one is found. For example, in a
proper context eq_op would be substituted by N.eqb.

This mechanism makes overloading of notation possible (here, eq_op is the overloaded
notation), thus making the proof process closer to the one we use in mathematics. For
example, we can assimilate a group structure to its support thanks to a type class where
the argument type represents the support of the group, and the constraints are the group
axioms. Since CoqEAL was designed for algebra, we make use of overloading and we have
a class for each operator/object one could need in this context: addition, multiplication
and their neutrals, substraction, division. . .

Type classes were preferred to design CoqEAL over canonical structures for their
modularity. New classes and instances can be de�ned at any point in a development and

ENS Lyon 9 Damien Rouhling

Internship report

one can select the ones (s)he wants to use, whereas canonical structures are more rigid:
they pack data/operators/properties together and adding/deleting one of them requires
the de�nition of a new structure.

3.2 Re�nement inference

In CoqEAL, we also use type classes to keep a database of re�nement theorems,
which allows us to let type class inference do the search of a re�nement for us. Indeed, we
have seen in Subsection 1.3 how to compare di�erent representations using relations. By
using a tag to de�ne a type class, one can feed type class inference with all the theorems
involving these relations. Together with particular instances de�ning rules to guide the
inference, this gives us a logical program computing re�nements. The class for re�nements
is the following:

Class refines A B (R : A -> B -> Type) (m : A) (n : B) :=

refines_rel : R m n.

It takes two types (understand two representations of the same data type), a relation
between them and two objects as arguments and asks for a proof that those two objects
are related. The types A and B can be deduced from the relation R so that it is not
necessary to write them. Inference is by default guided by the argument m (intuitively, we
go from the data type A to the data type B by translating a term of type A). From a logical
programming point of view, m is the input of the program whereas the other arguments
are the outputs. In that context, the lemma RratC_add of Subsection 1.3 translates to

Instance RratC_add : refines (RratC ==> RratC ==> RratC) add_op add_op.

The proof of this theorem will be the term stored as instance of the class refines. It
will be found and used by type class inference whenever we try to re�ne the addition over
the type rat.

Once all the re�nement instances for the base operators/objects are stored, Coq can
combine them using rules de�ned by particular instances to re�ne expressions de�ned with
these operators/objects. Among these rules, the one for the application of a function:

Instance refines_apply

A B (R : A -> B -> Type) A' B' (R' : A' -> B' -> Type) :

forall (f : A -> A') (g : B -> B'), refines (R ==> R') f g ->

forall (a : A) (b : B), refines R a b -> refines R' (f a) (g b).

In short, a function applied to an argument re�nes to a re�nement of the function,
applied to a re�nement of the argument. This rule is su�cient for dealing with any
number of arguments, thanks to currying. The rule refines_apply is essential to break
expressions into smaller bricks for which re�nement instances have been proven. For
example, assume given the following re�nement instances:

refines R x y,

refines R z t,

refines (R ==> R ==> R) + +,

refines (R ==> R ==> R) * *.

We used the same notations for both versions of addition (and multiplication), thanks
to overloading. Now assume we want to compute a re�nement of x + (x * z). We have
to deal with the following goal:

refines ?R (x + (x * z)) ?y,

where ?a is an existential variable standing for a that needs to be instantiated (remark
the consequent separation between the inputs and outputs of our logical program). By
the rule re�nes apply, this goal breaks up into

ENS Lyon 10 Damien Rouhling

Automatic re�nements in Coq

refines (?R' ==> ?R) (fun a => x + a) ?f,

refines ?R' (x * z) ?y',

and ?y is (partially) instantiated into ?f ?y'. The rule refines_apply can also be
applied to the �rst goal, which splits into

refines (?R'' ==> ?R' ==> ?R) + ?f',

refines ?R'' x ?y''.

These two goals are respectively solved by the assumptions on addition and x, thus
re�ning the instantiation of ?y into y + ?y'. Proceding similarly on the remaining goal,
which has been re�ned into

refines R (x * z) ?y',

type class inference �nally succeeds to prove

refines R (x + (x * z)) (y + (y * t)).

Another rule is the one for the composition of relations:

Lemma refines_trans T U V

(rTU : T -> U -> Type) (rUV : U -> V -> Type) (rTV : T -> V -> Type)

(t : T) (u : U) (v : V) :

composable rTU rUV rTV ->

refines rTU t u -> refines rUV u v -> refines rTV t v.

Here composable is another type class meaning that the �rst two arguments compose
into a subrelation of the third one. Remark the presence of the keyword Lemma instead
of Instance. Indeed, we cannot let the program use this lemma during inference for
questions of termination. That is not a real issue since this rule is only used to introduce
parametricity lemmas, as in Subsection 1.3; the instances that are stored are the ones for
the composed relation. When using this rule, the hypothesis refines rTU t u has to
be treated before refines rUV u v since in the latter u is an input and has thus to be
fully instantiated before triggering the inference of a proof for this hypothesis. We give
in Subsection 3.5 an example where this remark takes its importance.

3.3 Switching representations

Now that we have described how re�nement inference is done, we need to explain
how to trigger it. In CoqEAL, there are two ways of switching representations of an
object. The �rst one is by rewriting and only applies when going from a �proof-oriented�
representation to a �computation-oriented� one. In theory it would also be feasible in the
other direction but we lack a command in the type class mechanism to do so. Indeed,
as mentioned in Subsection 3.2, the structure of the �rst representation that occurs in
the arguments of the class refines guides the inference of the second one. We lack a
command to switch temporarily inputs and outputs of the logical program.

To perform re�nement by rewriting we use the following lemma:

Lemma refines_eq T (x y : T) : refines eq x y -> x = y.

This lemma simply removes the tag refines to get an equality that one can rewrite.
The use of a type class instance as hypothesis triggers type class inference, thus comput-
ing the re�nement. The next step is to �nd a theorem with a refines eq instance as
conclusion. Since most of the relations de�ning a re�nement in CoqEAL are expressed
using an equality, it is easy to produce such theorems.

The other way of going from a representation to another is by computation. It should
be used only when one want to go back from a �computation-oriented� representation to
a �proof-oriented� one. This method is inherently bound to one direction of translation

ENS Lyon 11 Damien Rouhling

Internship report

whereas there is only a technicality to make the �rst method avaible for both directions.
We use a function spec that computes the goal representation from the starting one.

We can use this function combined with the �rst re�nement method. Indeed, one can
prove that spec is a re�nement of the identity function through the following theorem:

Instance refine_spec : refines (R ==> eq) id spec,

where R is the relation used to de�ne the re�nement of the considered data type. Thus,
it is possible to use re�nement by rewriting to transform any �proof-oriented� expression
into spec applied to a �computation-oriented� version of the expression (it is necessary to
explicitely introduce the identity function for inference to succeed), and then to compute
the result of this application, hence going back to the �proof-oriented� representation.

Remark that the conclusion relation in refine_spec is equality. In fact, if we used
parametricity it would instead depend on the data type. For instance, for a re�nement
of natural numbers, R would be Rnat and eq would be replaced with JnatK. I decided
to prove this kind of theorems �by hand� instead of using parametricity because it would
have required interpreting many objects of the Mathematical Components library;
for nat it is not an issue, but it could one be for more complex structures that contain
proofs, which are not relevant for parametricity. On the contrary, without parametricity
for these functions, the theorems to prove �by hand� depend only on the structure used
as a re�nement, which most often does not contain any proof and is much simpler.

3.4 Optimization

The type class mechanism makes the design of a re�nement very systematic. The
user only has to prove re�nement instances for each base object/operator (s)he wants to
re�ne. Then, to re�ne an expression, the logical program de�ned by a few rules such as
refines_apply decomposes this expression and uses the small bricks at its disposition.
Nevertheless, it is possible to tune the system to use the best structures available as
re�nements.

An interesting remark is that type class inference is not bound to use refines_apply
each time it works on a function applied to an argument. It is indeed one instance stored
in the database among others. One can provide instances for speci�c input patterns in
order to re�ne such expressions into more e�cient representations than when using the
rule refines_apply.

For example, I worked on a re�nement of Mathematical Components polynomials
as sequences of coe�cients. Using refines_apply and re�nements of multiplication and
of the indeterminate, it is possible to re�ne the multiplication of a polynomial by the
indeterminate. However, on sequences, multiplying by the indeterminate is really easy
and e�cient: it su�ces to put a 0 at the beginning of the sequence. To avoid going
through the re�nement of multiplication, and to use this more e�cient operator (called
shift_op below), I introduced speci�c instances to recognize this pattern:

Instance RseqpolyC_mulX p sp :

refines RseqpolyC p sp -> refines RseqpolyC (p * 'X) (shift_op sp),

Instance RseqpolyC_Xmul p sp :

refines RseqpolyC p sp -> refines RseqpolyC ('X * p) (shift_op sp).

I could have written them as

Instance RseqpolyC_mulX p sp :

refines (RseqpolyC ==> RseqpolyC) (fun p => p * 'X) shift_op,

Instance RseqpolyC_Xmul p sp :

refines (RseqpolyC ==> RseqpolyC) (fun p => 'X * p) shift_op,

ENS Lyon 12 Damien Rouhling

Automatic re�nements in Coq

but because of the form of refines_apply only the second instance would have
been found by type class inference. Indeed, when f takes two arguments, applying
refines_apply in order to re�ne f x y means trying to re�ne f x on one hand, and y on
the other hand. Hence, type class inference fails to recognize (fun p => p * 'X) q in
the pattern q * 'X. That is why I expanded the de�nition of RseqpolyC ==> RseqpolyC.

Moreover, to make sure that these instances will be used during inference rather than
refines_apply, it is possible to give them priorities. Priorities de�ne the order that
is used during inference to try the instances stored in the database. The type class
mechanism already computes priorities when instances are declared, but one can override
the system by explicitely specifying a priority. In our case, giving a very low priority to
the rule refines_apply will be su�cient to make sure that all the particular cases are
tested before going through this generic step.

3.5 Re�nement of functions

Our logical program heavily relies on the rule refines_apply to compute re�nements.
Indeed, thanks to this rule it is su�cient to provide re�nements for a few basic operators
and constants, and it is the rule refines_apply that decomposes the expressions to isolate
these operators. However, this does not work for the re�nement of a function which is
not one of these operators: it is necessary to introduce variables for its arguments before
trying to re�ne its body. This can be done through the following rule, complementary to
refines_apply:

Lemma refines_abstr

A B A' B' (R : A -> B -> Type) (R' : A' -> B' -> Type)

(f : A -> A') (g : B -> B') :

(forall (a : A) (b : B), refines R a b -> refines R' (f a) (g b)) ->

refines (R ==> R') f g.

For reasons of termination we cannot de�ne it as an instance. Consequently, when a
re�nement of a function is needed one has to use the hypothesis of refines_abstr in-
stead of its conclusion. When working on a re�nement of Mathematical Components
matrices, I came across a case where such a manipulation was necessary. In the Mathe-
matical Components library, it is possible to de�ne a matrix from a function f taking
two arguments: the coe�cient in position (i, j) is f i j. To re�ne expressions involving
this construct, we need a re�nement of the operator de�ning the matrix and a re�nement
of the function involved in the expression. This led to the following �rst attempt (remark
the quanti�cation over the dimensions of the matrix, as mentioned in Subsection 2.3):

Instance RseqmxC_seqmx_of_fun m1 m2 (rm : nat_R m1 m2) n1 n2
(rn : nat_R n1 n2) f g

`{forall x y, refines (rI rm) x y ->

forall z t, refines (rI rn) z t ->

refines rAC (f x z) (g y t)} :

refines (RseqmxC rm rn) (\matrix_(i, j) f i j) (seqmx_of_fun g).

Here, rI is a relation which de�nes a re�nement ofMathematical Components type
ordinal, which takes a natural number n and returns the type of natural numbers smaller
than n (it represents the ring Z/nZ), and rAC is a relation which de�nes a re�nement of
the coe�cients of the matrices. What happens during type class inference with this
instance is that the program tries to re�ne the (simpli�ed) application f x z as the (not
yet instantiated) application ?g y t. In some cases, depending on the form of the body
f x z, the use of refines_apply would lead the inference to fail. For example, with the
body x + (x * z), the program splits the goal into

refines (?R ==> rAC) (fun a => x + a) (?g y),

ENS Lyon 13 Damien Rouhling

Internship report

refines ?R (x * z) t,

thus failing. This issue would not occur if, instead of ?g y t, the program generated a
single existential variable ?e. Indeed, the di�erent instances used by type class inference
would progressively instantiate this variable, giving it the right shape, and it would be
su�cient afterwards to unify the result with the application ?g y t.

To force the program to infer a re�nement of f x z with an existential variable ?e,
and only then to unify the result with the application ?g y t, I composed the re�nement
relation rAC with a new type class having a single instance (re�exivity) forcing uni�cation:

Class unify A (x y : A) := unify_rel : x = y.

Instance unifyxx A (x : A) : unify x x := erefl.

Now, by using the rule for relation composition (refines_trans in Subsection 3.2) on
the goal

refines (rAC o unify) (f x z) (?g y t),

the program is left with the two goals

refines rAC (f x z) ?e,

refines unify ?e (?g y t).

The �rst goal is the one that we could solve with type class inference. With a �proof�
that unify x y implies refines unify x y (recall that refines is only a tag), uni�-
cation �nishes the proof for the second goal. Here, refines_trans can safely be used
through an instance since with the type class mechanism we can tell the program to use
it only in the speci�c case where the relation is of the form R o unify.

4 Applications

I present here two applications of my work. The �rst one, already mentioned several
times before, is the use of computation inside of proofs. We give here an example that
involves almost all the re�nements I proved during this internship. The other application
is a reimplementation of the tactic ring ([MG05]) using re�nement.

4.1 Proofs by computation

One of the ideas behind the Mathematical Components library is to let the user
specify the most signi�cant steps in a proof and to use small steps of computation to
eliminate low-level details. This, together with overloading of notations, makes the proof
process closer to the one we use in mathematics. However, for bigger steps, the data
structures of the library do not really �t because they are �proof-oriented�: they embed
proofs and information that make mathematical developments easier, and they use algo-
rithms that are simple enough to be easily proven correct. With re�nements, it is possible
to replace these algorithms with more e�cient ones, and to use lighter data structures, in
the sense that they do not carry any irrelevant information for computation.

Thus, when a simpli�cation of the goal seems obvious because this goal should compute
to something simpler, it is possible to use re�nement before triggering the computation.
For example, in the Mathematical Components library there is a development about
real closed �elds 4 in which a determinant has to be computed. The function \det in the
Mathematical Components library is de�ned using the Leibniz formula:

det (M) =
∑
σ∈Sn

ε (σ)

n∏
i=1

Mσ(i),i.

4https://github.com/math-comp/math-comp/blob/master/mathcomp/real_closed/qe_rcf_th.v

ENS Lyon 14 Damien Rouhling

https://github.com/math-comp/math-comp/blob/master/mathcomp/real_closed/qe_rcf_th.v

Automatic re�nements in Coq

It would be more e�cient to use a re�nement of this function instead of this formula,
even if we could remove locks on Mathematical Components structures. In the case
of this development, the determinant of the following matrix had to be computed:

Definition ctmat1 := \matrix_(i < 3, j < 3)

(nth [::] [:: [:: 1%:Z ; 1 ; 1]

; [:: -1 ; 1 ; 1]

; [:: 0 ; 0 ; 1]] i)`_j.

Here nth is a function that takes a default value, a sequence and a natural number
n and that returns the n-th element of the sequence if n is smaller than its size and the
default value otherwise. The notation s`_j stands for nth 0 s j and the notation %:Z

is an explicit coercion from the type nat to the type int. In short, ctmat1 is the matrix
of integers that you would represent on paper as the array from which it is de�ned: 1 1 1

−1 1 1
0 0 1

 .

The goal is to prove the following lemma:

Lemma det_ctmat1 : \det ctmat1 = 2.

The proof of this lemma is obvious since the determinant of this matrix indeed com-
putes to 2. However, because of locks, in the Mathematical Components library it
is necessary to rewrite several equalities in order to prove it. Let us have a look at the
proof:

by do ?[rewrite (expand_det_row _ ord0) //=;

rewrite ?(big_ord_recl,big_ord0) //= ?mxE //=;

rewrite /cofactor /= ?(addn0, add0n, expr0, exprS);

rewrite ?(mul1r,mulr1,mulN1r,mul0r,mul1r,addr0) /=;

do ?rewrite [row' _ _]mx11_scalar det_scalar1 !mxE /=].

The �rst theorem that is used, as suggested by its name, is a theorem that expands
the determinant by development along a row. The theorems addn0 and add0n state that
0 is a neutral on the right (resp. on the left) for the addition on natural numbers, and
similarly for the theorems mul1r and mulr1 with 1 and the multiplication in a ring. The
theorem expr0 states that the exponentiation of any ring element by 0 is equal to 1. We
will not explain the remaining of the proof, since our purpose is not to make this proof
understandable but to show how heavy it can be to do computations in this context. This
results in a fairly complicated proof script for the computation of the determinant of a 3
by 3 matrix. There is a similar example in a formalisation of sign determination for real
algebraic numbers 5, involving �nite sets (for which we do not have a re�nement yet), and
giving a script of more than 40 lines.

With re�nement, this proof is reduced to the following:

apply/eqP.

rewrite [_ == _]refines_eq.

by vm_compute.

The �rst line is typical in SSReflect proof scripts: it is a re�ection that replaces Coq
equality with the equality operator of int, called eq_op (similarly as in Subsection 3.1
thanks to the overloading provided by canonical structures), and denoted by ==. The
second line triggers re�nement on the boolean ctmat1 == 2. The last line concludes the
proof by computation on the re�ned structures.

5https://github.com/Barbichu/signdet/blob/master/signdet.v

ENS Lyon 15 Damien Rouhling

https://github.com/Barbichu/signdet/blob/master/signdet.v

Internship report

This proof involved many di�erent re�nements that I proved during this internship.
First, there is a program re�nement that replaces the function \det with Bareiss' algo-
rithm for the computation of the determinant. The data structures for which a re�nement
was required are matrices and integers, the latter requiring re�nements of natural num-
bers and positive natural numbers, but also polynomials since Bareiss' algorithm uses
the characteristic polynomial of a matrix. For most of them, my work was to patch the
existing proofs that were not working anymore. However I redevelopped the re�nement of
polynomials from scratch using a di�erent relation (that left more theorems of theMath-
ematical Components library at my disposition for the proofs) and also did almost all
the proofs for matrices (all except those for the null matrix and the operator M 7→ −M),
adding some new re�nements such as diagonal and scalar matrices or the trace function.

4.2 The tactic ring

ring [MG05] is a tactic that proves equations modulo the axioms of rings. It works
on both sides of the equation in three steps:

1. interprete the ring expression as a polynomial expression,

2. put the polynomial in normal form,

3. go back to the world of ring expressions.

The �rst step is done by observing the head operator in the expression and interpreting
it as an operator over polynomials, and then recursively interpreting its arguments. The
tactic has an interpretation in terms of polynomial expressions for the terms generated
by the following grammar:

e ::= 0 | 1 | e1 + e2 | e1 ∗ e2 | e1 − e2 | −e | en | c,

where n ranges over natural numbers and c over ring-speci�c constants for which the
user has provided an interpretation. For the remaining operations that have no interpre-
tation, the subexpression that cannot be translated is interpreted as an indeterminate.
For instance ([dt16]), the expression

((f(5) + x) * x) + ((if b then 4 else f(3)) * 2)

is interpreted as the polynomial

((Y + Z) * Z) + (X * 2),

where the variable map {X -> if b then 4 else f(3), Y -> f(5), Z -> x} is
stored to be able to go back to ring expressions in the last step. Here, f and x are
variables and consequently have no interpretation as polynomial operations/objects, and
the if construct is not a standard ring operation, even if it could be encoded as follows:

if b then x else y = x * b + y * (1 - b).

The normal form considered for the second step is an optimized version of Horner's
representation of polynomials. The non-optimized version of this representation, to which
I have proven a re�nement of Mathematical Components polynomials, is the follow-
ing: a polynomial is either a constant, or Xn ∗ P + c where c is a constant, n is positive
and P is a polynomial in Horner's representation. For normalization, multivariate polyno-
mials (with indeterminates X1, . . . , Xn) are considered as monovariate polynomials (with
indeterminate X1) over multivariate polynomials (with indeterminate X2, . . . , Xn). On
our example the normal form is

(X * 2) + (Y * Z) + Z2,

giving as a result the expression

ENS Lyon 16 Damien Rouhling

Automatic re�nements in Coq

((if b then 4 else f(3)) * 2) + (f(5) * x) + x2.

My reimplementation of the tactic ring makes a clear distinction between these three
steps. It is composed of three tactics: translateEq, which performs the translation of ex-
pressions as polynomials, simplPoly, which normalizes the polynomials, and evalHorner,
which evaluates the polynomials to go back to the world of ring expressions.

For the �rst step, instead of a user de�ned type for polynomials, I usedMathematical
Components type polynomial. Note that since every speci�c operator is replaced with
a variable, the translation as a polynomial of an expression does not depend on the ring.
I used the type int for the ring of coe�cients, since it is a type for which there exists
a re�nement in CoqEAL; this is not a requirement, but I knew I would use re�nement
for the normalization step. The variable map is computed as a sequence but does not
appear to the user when applying translateEq. In fact, this tactic proves that each side
of the goal equality is equal to the evaluation of its translation as a polynomial at the
values provided by the variable map. This proof is not di�cult since the expressions are
exactly their corresponding polynomial where the indeterminates are replaced with their
assignment in the variable map. Thus, this tactic changes the goal from the equality
between two expressions in a ring to the equality between two evaluations of multivariate
polynomials over integers. For instance, the goal

a + b - (1 * b + c * 0) = a

becomes

let P := X + Y - (1 * Y + Z * 0) in

let Q := X in

P[a][b][c] = Q[a][b][c].

The second step, normalization, is done through re�nement. The polynomials, isolated
thanks to the let ... in construct, are re�ned to �computation-oriented� structures
and normalized through computation using the spec operator. Remark that in this case
I implemented a spec operator computing polynomials in a speci�c form instead of a
less speci�c but more easily provable function. On our example, the tactic simplPoly

transforms the goal into

X[a][b][c] = X[a][b][c].

Finally, the tactic evalHorner evaluates both polynomials by rewriting equations pro-
vided by the Mathematical Components library, giving here the trivial goal

a = a.

Presently, this implementation is incomplete and not very e�cient. First, the power
function is not interpreted as an operator on polynomials during the translation step be-
cause we do not have a re�nement for it yet. Then, we do not provide the possibility
to declare interpretations for ring-speci�c constants. Moreover, evaluation, both for the
proofs in the �rst step and for the third one, is done by rewriting equations aboutMathe-
matical Components polynomials. As we have seen on the example of the determinant,
these theorems are very speci�c. Since we want this evaluation to be automatic, we can-
not choose the right theorem to rewrite at each small step in the evaluation. All we can
do is to provide a rule with all the theorems that could be needed, and Coq will try
them, making progress when it �nds one that is usable. Rewriting involves uni�cation
and, in spite of the optimizations on the rewrite tactic in SSReflect in order to lower
the number of considered non-solvable uni�cation goals, this method is still expensive in
terms of running time. Finally, the time needed to perform the re�nement mainly depends
on the number of indeterminates but does not scale very well, for some reasons we still
need to investigate.

ENS Lyon 17 Damien Rouhling

Internship report

Switching back to user de�ned polynomial expressions should solve the running time
issue in the translation step but we need to provide some way of seeing them as Math-
ematical Components polynomials for the re�nement step. A possibility is to use
a function to translate expressions into Mathematical Components polynomials, to-
gether with a proof of its correctness.

This reimplementation should allow the tactic to deal with more equations than the
tactic ring. The modularity brought by the clear distinction between the three steps
makes it possible to change the tactic used for one of them so long as the interface
between the three steps stays the same. In particular, an improvement over the tactic
ring would be a more powerful tactic that handles morphisms for the �rst step. For
instance, we would be able to simplify the expression

f(x + y) - f(y)

into f(x) if the corresponding polynomial for this expression was

X + Y - Y

with the variable map {X -> f(x), Y -> f(y)}. The Mathematical Compo-
nents library already embeds the necessary theorems to �push� in such a way the mor-
phisms to the leaves of an expression.

Conclusion

The goal of this work was to automatize the use of parametricity ([Wad89]) in Co-
qEAL ([DMS12]), in order to make the development of certi�ed e�cient algorithms/data
structures more systematic.

We used Keller and Lasson's plugin for parametricity ([KL12]) to generate the needed
instantiations of the parametricity theorem. This required some modi�cations of its code,
to make it work with the new version of Coq, and to solve an issue raised by the over-
loading of some names in the Mathematical Components library.

We used these theorems to prove re�nements for several structures ofMathematical
Components: natural numbers, positive natural numbers, integers, polynomials (two
di�erent re�nements), matrices, rational numbers and the �eld F2. For most of them,
it was only a matter of �xing the already existing proofs. In the case of polynomials
and matrices, however, almost all the proofs were done from scratch. We also adapted
the proofs of two program re�nements: Karatsuba's algorithm for the multiplication of
polynomials and Bareiss' algorithm for the determinant.

This work opens the door to the use of bigger computation steps inside proofs. For
instance, a re�nement of �nite sets should bring the necessary material for the reduction of
a 40 lines long script for the computation of 3 determinants to only a few lines. Moreover,
we started a reimplementation of the ring tactic ([MG05]), using re�nement, that should
make it possible to apply it to more equations.

This work can be extended in di�erent ways. A �rst possibility is to �nish the reim-
plementation of the ring tactic and to improve it in order to deal with morphisms. Using
Gröbner bases, it would also be possible to solve equations modulo other equations given
as hypotheses. Another way to continue this work is to develop more re�nements on
top of those we proved. For data re�nements, there is the type of �nite sets, which we
mentioned before, but also the rings Z/nZ, which is work in progress, and the re�nements
of the power function on several data types, needed to complete the reimplementation of
the ring tactic with re�nements. From program re�nements, we can mention Strassen's
algorithm for matrix multiplication or an algorithm computing the Smith normal form of
matrices over Euclidean rings, already present in the previous version of CoqEAL but
needing modi�cations for the use of the parametricity plugin.

ENS Lyon 18 Damien Rouhling

Automatic re�nements in Coq

References

[Bar68] Erwin H. Bareiss. Sylvester's identity and multistep integer-preserving gaus-
sian elimination. Mathematics of Computation, 22(103):565�578, 1968.

[CDM13] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Re�nements for free! In
Georges Gonthier and Michael Norrish, editors, Certi�ed Programs and Proofs
- Third International Conference, CPP 2013, Melbourne, VIC, Australia, De-
cember 11-13, 2013, Proceedings, volume 8307 of Lecture Notes in Computer
Science, pages 147�162. Springer, 2013.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95�120, 1988.

[CPM90] Th. Coquand and C. Paulin-Mohring. Inductively de�ned types. In P. Martin-
Löf and G. Mints, editors, Proceedings of Colog'88, volume 417 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[Dij82] Edsger W. Dijkstra. On the role of scienti�c thought. In Selected Writings on
Computing: A Personal Perspective, pages 60�66. Springer-Verlag, 1982.

[DMS12] Maxime Dénès, Anders Mörtberg, and Vincent Siles. A re�nement-based ap-
proach to computational algebra in coq. In Lennart Beringer and Amy P.
Felty, editors, Interactive Theorem Proving - Third International Conference,
ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings, volume 7406
of Lecture Notes in Computer Science, pages 83�98. Springer, 2012.

[dt16] The Coq development team. The Coq proof assistant reference manual, 2016.
Version 8.5.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O'Connor, Sidi
Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and
Laurent Théry. A Machine-Checked Proof of the Odd Order Theorem. In
Sandrine Blazy, Christine Paulin, and David Pichardie, editors, ITP 2013,
4th Conference on Interactive Theorem Proving, volume 7998 of LNCS, pages
163�179, Rennes, France, July 2013. Springer.

[GMT15] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Re�ection
Extension for the Coq system. Research Report RR-6455, Inria Saclay Ile de
France, 2015.

[Gon08] Georges Gonthier. Formal proof�the four-color theorem. Notices of the AMS,
55(11):1382�1393, 2008.

[KL12] Chantal Keller and Marc Lasson. Parametricity in an impredicative sort.
In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic
(CSL'12) - 26th International Workshop/21st Annual Conference of the
EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of
LIPIcs, pages 381�395. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

[Lam13] Peter Lammich. Automatic data re�nement. Archive of Formal Proofs, 2013,
2013.

[MG05] Assia Mahboubi and Benjamin Gregoire. Proving Equalities in a Commutative
Ring Done Right in Coq. In Joe Hurd and Tom Melham, editors, TPHOLs
2005, volume 3603, pages 98�113, Oxford, United Kingdom, August 2005.
Springer.

[MT13] Assia Mahboubi and Enrico Tassi. Canonical structures for the working coq
user. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, edi-
tors, Interactive Theorem Proving - 4th International Conference, ITP 2013,

ENS Lyon 19 Damien Rouhling

Internship report

Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes
in Computer Science, pages 19�34. Springer, 2013.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513�523, 1983.

[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, Inter-
national Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings,
volume 173 of Lecture Notes in Computer Science, pages 145�156. Springer,
1984.

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Otmane Aït
Mohamed, César A. Muñoz, and So�ène Tahar, editors, Theorem Proving in
Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings, volume 5170 of Lecture Notes in
Computer Science, pages 278�293. Springer, 2008.

[Soz09] Matthieu Sozeau. A new look at generalized rewriting in type theory. J.
Formalized Reasoning, 2(1):41�62, 2009.

[Wad89] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings
of the fourth international conference on Functional programming languages
and computer architecture, FPCA 1989, London, UK, September 11-13, 1989,
pages 347�359. ACM, 1989.

ENS Lyon 20 Damien Rouhling

	Introduction
	Context
	On proofs and computation
	Refinement methodology
	Example

	The role of parametricity
	The parametricity theorem
	Data refinements as ``free theorems''
	On partial refinements

	Implementation
	Type classes
	Refinement inference
	Switching representations
	Optimization
	Refinement of functions

	Applications
	Proofs by computation
	The tactic ring

	Conclusion
	References

